D4M and Large Array Databases for Management
and Analysis of Large Biomedical Imaging Data

Siddharth Samsi, Laura Brattain, Vijay Gadepally and Jeremy Kepner
MIT Lincoln Laboratory
Lexington, MA

Abstract—Advances in medical imaging technologies have
enabled the acquisition of increasingly large datasets. Current
state-of-the-art confocal or multi-photon imaging technology can
produce biomedical datasets in excess of 1 TB per dataset. Typical
approaches for analyzing large datasets rely on downsampling the
original datasets or leveraging distributed computing resources
where small subsets of images are processed independently.
These approaches require significant overhead on the part of
the programmer to load the desired sub-volume from an array
of image files into memory. Databases are well suited for indexing
and retrieving components of very large datasets and show
significant promise for the analysis of 3D volumetric images.
In particular, array-based databases such as SciDB utilize an
architecture that supports massive parallel processing while also
providing database services such as data management and fast
parallel queries.

In this paper, we will present a new set of tools that leverage
the D4M (Dynamic Distributed Dimensional Data Model) toolbox
for analyzing giga-voxel biomedical datasets. By combining SciDB
and the D4M toolbox, we demonstrate that we can access large
volumetric data and perform large-scale bioinformatics analytics
efficiently and interactively. We show that it is possible to achieve
an ingest rate of 2.8 million entries per second for importing large
datasets into SciDB. These tools provide more efficient ways to
access random sub-volumes of massive datasets and to process
the information that typically cannot be loaded into memory.
This work describes the D4M and SciDB tools that we developed
and presents the initial performance results.

I. INTRODUCTION

Advances in imaging technologies are enabling the acquisi-
tion of larger and higher resolution biomedical datasets. New
imaging techniques such as CLARITY [1] have the potential to
significantly advance our understanding of brain function by
enabling molecular and optical interrogation of brain tissue.
However, a significant challenge in this area is the manage-
ment and analysis of 3D volumetric data generated using
such techniques. Several commercial [2], [3] and open source
tools [4], [5], [6] are available for the analysis and visualization
of biomedical imaging data. Each tool has its set of advantages
and disadvantages, but a common limitation in many of these
systems is the inability to analyze and/or visualize data sets
that are significantly larger than the total amount of memory
available on the system. Additionally, many of these packages
are focused on single-client visualization and may not have a

This work is sponsored by the Assistant Secretary of Defense for Research
and Engineering under Air Force Contract FA8721-05-C-0002. Opinions,
interpretations, recommendations and conclusions are those of the authors
and are not necessarily endorsed by the United States Government.

programmatic way to serve image data to a variety of clients.
Traditional parallel computing approaches to the analysis of
large image datasets involves the use of multiple processors
to analyze subsets of images. In this article, we describe a
new approach for data management that leverages the array-
based database SciDB [7] and the data analysis tool, Dynamic
Distributed Dimensional Data Model (D4M) [8].

SciDB is an open-source database that uses an array data
model [9], [10]. The array-based data model provides support
for parallel processing, efficient sparse storage, and in-database
linear algebra operations that are well suited for the storage
and analysis of biomedical imaging data. D4M is an open
source software package that provides a uniform framework
based on the mathematics of associative arrays [11] that can
be applied to diverse domains such as cyber, bioinformatics,
free text and social media data. D4M can also be used to
perform linear algebraic operations inside a database [12]. In
this article, we extend D4M to encompass multi-dimensional
arrays in SciDB using imaging data management as an exam-
ple application.

II. D4M EXTENSIONS

The overall goal is to enable a workflow where volumetric
data is inserted into a multi-dimensional array in SciDB and
accessed from MATLAB using D4M as shown in Figure 1.

SciDB gives us the ability to efficiently extract random,
multi-dimensional data using appropriate queries. Consider a
three-dimensional array in SciDB with the following schema:

vol3d<val:double> [row=1:4096,4096,0,col
=1:4096,4096,0,s1lice=1:1000,1,0]

Using the SciDB AFL query language, a sub-volume can
be extracted as shown below:

between(vol3d, 100, 100, 10, 300, 500, 100);

This query will extract all values in the cube bounded by
rows=100:300, cols=100:500 and slice=10:100. This is a very
powerful capability that we extend to D4M so that end users
can extract sub-volumes from SciDB using standard MATLAB
indexing syntax as shown in Listing 1.

Listing 1: DAM example to extract sub-volume

B = DBsetupSciDB (’txg-testdb’);

= DB (’vol3d<gray:uint8>row=1:4096,4096,0,col
=1:4096,4096,0,s1ice=1:1000,1,01");
getVolume (T, 100:300, 100:500, 10:100);

D
T

v =

Image Files on Disk NPStaining_c0001
NPStaining_z001_c0001.tif
NPStaining_z002_c0001.tif
NPStaining_z003_c0001.tif
NPStaining_z004_c0001.tif

NPStaining_z1817_c0001.tif

NPStaining_z1818_c0001.tif

Query and extract

MATLAB and D4M
DB = DBsetupSciDB(‘txel-scidb’);
T = DB(‘NPStaining_c001');
vol= getVolume(T, 100:200,300:450,
200:400);

BW = im2bw(vel, graythresh(vol));

Fig. 1: Importing and accessing 3D volumetric data from SciDB using MATLAB and D4M

Similarly, data is ingested into SciDB using D4M as shown
in Listing 2. In this example, slice number 15 of a 1000 slice
3D volume is ingested using D4M.

Listing 2: DAM example to extract sub-volume

DB = DBsetupSciDB (’'txg-testdb’);
T = DB(’vol3d<gray:uint8>row=1:4096,4096,0,col
=1:4096,4096,0,s1lice=1:1000,1,01");

im = imread(’test-image.tif’);

[nr, nc] = size(im);

[rowids, colids] = ind2sub([nr nc],
slicenum = 15xones (size(ir));

T = putTriple(T, [rowids colids slicenum],

[l:nr*nc]l’);

im(:));

III. BENCHMARKING DATA INGEST

Due to the size of datasets, one of our goals was to bench-
mark the data ingest process. For this test, we used randomly
generated imaging data to simulate a volume of size 5120
x 5120 x 1000 pixels. The data was ingested using a range
of SciDB configurations. For a single node instance of SciDB
configurations with 1, 4, 8, 12 and 16 SciDB worker processes
were used. A two-node SciDB configuration using 2, 4, 8 and
16 SciDB worker threads per node was also used for testing.
Data was imported using 2, 4, 8 and 12 processes running in
parallel on the same node as the database. Data was imported
using the SciDB Shim interface from MATLAB and D4M.
Figure 2 shows the ingest rates achieved. When importing data
into a single node instance of SciDB, we achieved a maximum
ingest rate of 2.23 million entries/second by using 8 parallel
MATLAB processes as shown in Figure 2a. A maximum ingest
rate of 2.876 million entries/second was observed when using
8 parallel MATLAB processes importing into a two node
SciDB instance. In each of these configurations, the use of
more than 8 parallel processes for importing data resulted in a
degradation of performance. Similarly, SciDB configurations
using more than 8 SciDB instances per node did not result in
an appreciable increase in ingest rates and actually results in
a slower ingest in the case of the two-node SciDB instance as
shown in Figure 2b.

IV. CONCLUSION

D4M and SciDB offer a new approach to the storage and
analysis of large biomedical imaging datasets. By levaraging

x10°

—3j¢— 1 SciDB thread
—¥—4 SciDB threads
8 SciDB threads
—¥— 12 SciDB threads
2 || —k—16 SciDB threads

25

=
4

Entries per second
=

0.5

0 L L L L L
0 2 4 6 8 10 12

Number of MATLAB processes

(a) Ingest rate with single node SciDB instance. Maximum ingest
rate: 2.23 million entries/sec.

x10°

—¥—2 threads/node

—¥—4 threads/node
8 threads/node

—¥— 16 threads/node

Entries per second

0.5 L L L L
2 4 6 8 10 12
Number of MATLAB processes

(b) Ingest rate with two node SciDB instance. Maximum ingest
rate: 2.876 million entries/sec.

Fig. 2: Timing results for data ingest in SciDB: Data was
ingested using multiple parallel processes running on the same
compute node as the database. Parallelization was achieved
using pMATLAB [13].

D4M, it is possible to access large volumetric imaging data
stored in SciDB using high-level languages such as MATLAB.
The ability to efficiently access any 3D sub-volume from such
a dataset gives us a capability that is not easily available using
traditional approaches to image data management. Future work
in this area includes the implementation of image analysis
routines as linear algebra operations that can be run directly
in SciDB, thus removing the need to retrieve data from the
database. Other areas of research include the development
of a more efficient method to import images into SciDB by
exploiting sparsity and statistical distribution of the data.

V. ACKNOWLEDGEMENT

The authors would like to thank Prof. Kwanghun Chung
for providing imaging data used in the development of D4M
extensions.

REFERENCES

[1] K. Chung and K. Deisseroth, “Clarity for mapping the nervous system,”
Nat Meth, vol. 10, no. 6, pp. 508-513, 06 2013. [Online]. Available:
http://dx.doi.org/10.1038/nmeth.2481

[2] BITPlane, “Scientific Data Visualization & Analysis Software for Mi-
croscopy,” http://www.bitplane.com/imaris, [Online; accessed 16-Dec-

2015].
[3] Molecular Devices, “MetaMorph Microscopy
Automation and Image Analysis Software,”

http://www.moleculardevices.com/systems/metamorph-research-
imaging/metamorph-microscopy-automation-and-image-analysis-
software, [Online; accessed 16-Dec-2015].

[4] C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “Nih image to
imagej: 25 years of image analysis,” Nat Meth, vol. 9, no. 7, pp. 671—
675, 07 2012. [Online]. Available: http://dx.doi.org/10.1038/nmeth.2089

[5] J. R. Swedlow, I. Goldberg, E. Brauner, and P. K. Sorger, “Informatics
and quantitative analysis in biological imaging,” Science, vol. 300, no.
5616, pp. 100-102, 2003.

[6] H. Peng, Z. Ruan, F. Long, J. H. Simpson, and E. W. Myers, “V3d
enables real-time 3d visualization and quantitative analysis of large-scale
biological image data sets,” Nat Biotech, vol. 28, no. 4, pp. 348-353,
04 2010. [Online]. Available: http://dx.doi.org/10.1038/nbt.1612

[71 M. Stonebraker, P. Brown, D. Zhang, and J. Becla, “Scidb: A database
management system for applications with complex analytics,” Comput-
ing in Science Engineering, vol. 15, no. 3, pp. 54-62, May 2013.

[8] J. Kepner, W. Arcand, W. Bergeron, N. Bliss, R. Bond, C. Byun,
G. Condon, K. Gregson, M. Hubbell, J. Kurz, A. McCabe, P. Michaleas,
A. Prout, A. Reuther, A. Rosa, and C. Yee, “Dynamic distributed
dimensional data model (d4m) database and computation system,” in
Acoustics, Speech and Signal Processing (ICASSP), 2012 IEEE Inter-
national Conference on, March 2012, pp. 5349-5352.

[9] J. Bayard Cushing, J. French, S. Bowers, M. Stonebraker, P. Brown,
A. Poliakov, and S. Raman, The Architecture of SciDB. Springer Berlin
Heidelberg, 2011, vol. 6809, pp. 1-16.

[10] P. G. Brown, “Overview of scidb: Large scale array storage, processing
and analysis,” in Proceedings of the 2010 ACM SIGMOD International
Conference on Management of Data, ser. SIGMOD ’10. New York,
NY, USA: ACM, 2010, pp. 963-968.

[11] J. Kepner, C. Anderson, W. Arcand, D. Bestor, B. Bergeron, C. Byun,
M. Hubbell, P. Michaleas, J. Mullen, D. O’Gwynn, A. Prout, A. Reuther,
A. Rosa, and C. Yee, “D4m 2.0 schema: A general purpose high
performance schema for the accumulo database,” in High Performance
Extreme Computing Conference (HPEC), 2013 IEEE, Sept 2013, pp.
1-6.

[12] V. Gadepally, J. Kepner, W. Arcand, D. Bestor, B. Bergeron, C. Byun,
L. Edwards, M. Hubbell, P. Michaleas, J. Mullen, A. Prout, A. Rosa,
C. Yee, and A. Reuther, “D4m: Bringing associative arrays to database
engines,” in High Performance Extreme Computing Conference (HPEC),
2015 IEEE, Sept 2015, pp. 1-6.

[13] N. Travinin Bliss and J. Kepner, “pmatlab parallel matlab library,” Int. J.
High Perform. Comput. Appl., vol. 21, no. 3, pp. 336-359, Aug. 2007.

