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Abstract—BigDAWG is a polystore database system designed
to work with heterogenous data that may be stored in disparate
database and storage engines. A central component of the
BigDAWG polystore system is the ability to submit queries that
may be executed in different data engines. This paper presents
a monitoring framework for the BigDawg federated database
system which maintains performance information on benchmark
queries. As environmental conditions change, the monitoring
framework updates existing performance information to match
current conditions. Using this information, the monitoring system
can determine the optimal query execution plan for similar
incoming queries. We also describe a series of test queries that
were run to assess whether the system correctly determines the
optimal plans for such queries.

I. INTRODUCTION

BigDAWG is a system that utilizes a polystore architecture
to enable query processing over multiple databases, where
each of the underlying storage engines may have a distinct data
model. One important component of BigDawg is a monitoring
system which keeps track of past queries’ runtime information
and utilizes this information to choose the best query plan
for an incoming query. The main way the monitoring system
associates incoming queries with benchmark queries is by
utilizing a signature system.

It has become abundantly clear that there are a multitude
of different features that people desire in their data storage
engine. Currently, to suit people’s interests, there are a variety
of different storage engines that each have their own costs and
benefits. For common Javascript applications that use a web
browser paired with a backend database management system
(DBMS), NoSQL engines tend to be well-suited. Similarly,
relational column stores are the engine of choice for data
warehouses while main memory SQL (NewSQL) systems are
best suited for online transaction processing. In general, there
needs to be a variety of different storage engines to satisfy
different types of applications.

While there are many applications that may be well suited
to a single type of storage engine, there are many other appli-
cations that would be best implemented with a combination
of different storage engines. For example, the Intel Science
and Technology Center (ISTC) has built a medical application
that utilizes the MIMIC II dataset [1]. This dataset contains
patient metadata, text data (notes taken by medical profession-
als), semi-structured data (prescriptions and lab results), and
waveform data (measurements from bedside devices such as
heart rate, pulse, etc.). A medical application that utilizes this
dataset would ideally support standard SQL analytics, complex

analytics (such as computing the FFT of a patient’s waveform
data and comparing it to what is considered normal), text
search (such as looking at patients that medical professions
have used specific terms for in their notes), and real-time
monitoring (such as detecting abnormal heart rhythms).

Although it is possible to implement such an application
using a single storage engine, it can be much more efficient
to utilize several different storage engines [2]. To support
datasets such as MIMIC II, we developed a polystore database
management system architecture called BigDAWG [3]. For
the MIMIC II dataset, BigDAWG uses SciDB [4] to store
the historical time series data, Apache Accumulo [5] for text,
Postgres for patient metadata, and the streaming database S-
Store [6] to store and process the real-time waveform data.
With the BigDAWG architecture, any query that depends on
data stored in multiple storage engines will query all necessary
storage engines. For example, to compare current waveforms
to historical ones, one can query S-Store and SciDB. To find
metadata associated with particular kinds of prescriptions or
doctor’s notes, one can query Accumulo and Postgres. To
run analytics on particular cohorts of patients, one can query
Postgres and SciDB. The BigDAWG system automatically
develops query plans, executes queries on individual storage
or database engines and collates the resulting data back to
the end-user. An overview of the BigDAWG architecture
is shown in Figure 1. In this architecture, BigDAWG can
support multiple islands of information which encapsulate a
data model, programming model and candidate set of database
engines. In our current implementation, we support a relational
island [7], text or associative array island [8], [5], [9], and
an array island. Queries that are received by the BigDAWG
system can be executed by a single island or multiple islands.
The BigDAWG islands also support semantically complete
functionality of underlying engines through degenerate islands
that support only a single engine.

Since similar datasets reside in different islands, BigDAWG
must be able to execute queries across different islands. For
example, the same piece of data from the MIMIC II dataset
may be stored in Accumulo which is accessed throug the
associative array island and in PostGRES which is accessed
through the relational island. When a query comes in, the
BigDAWG system must be able to determine which island
and engine to execute queries and/or analytics for highest
performance. Often, these queries may also span different
islands and BigDAWG must be able to determine the most
efficient intra-island and inter-island query plan.
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Fig. 1. Multi-Island Data Federation through BigDAWG

This article describes the implementation and performance
results of the BigDAWG monitor. For the remainder of the
paper, we refer to this as the BigDAWG monitor which is a
part of the BigDAWG middleware. The article is structured
as follows. Section II describes our approach to optimizing
queries across different islands and disparate data stores.
Section III describes the architecture of the BigDAWG mid-
dleware. Section IV describes the results of our prototype
implementation. Finally, in Section V we discuss further work
and conclude.

II. BIGDAWG QUERY OPTIMIZATION

In this section, we discuss how a query that comes to
the BigDAWG system is executed and optimized across the
different islands and stores.

Any query that spans multiple islands is divided into stages.
In the first stage, we perform all possible local computations
that do not require any data movement. At the end of the
first stage, we are left with computations on collections of
objects at different sites. These computations are divided
into independent subsets consisting of a collection of objects
O1, ..., Ok along with “joining” specifications for how the
objects are put together and computations on the output of
such operations. Although the remainder of the query can
be one such collection, we look for collections of size two
initially. Effectively, we look for a bushy tree [10] of such
computations, which will often be unique.

Suppose that there are L such collections, with each col-
lection operating on non-overlapping sets of objects. In the
second stage, we perform each of these L computations in
parallel. For each of the L computations, pick a storage engine,
E, and move the required objects O1, ..., Ok to E and perform
the computation at E. In this case, the fundamental query
optimization decision is the choice of engine E for each
collection.

The purpose of the monitoring system is to determine
the choice of the storage engine, E, for each collection of
objects. The monitoring system has two modes, training
and production mode. In training mode, BigDAWG has the
liberty to run an operation at each local engine that contains

Fig. 2. BigDAWG Middleware Components.

data for the subquery and record the elapsed time in a
BigDAWG database. If a given (sub)query is run at these local
engines, then BigDAWG can identify the best location for this
operation. Hence, training mode is effectively a training period
where queries are run in multiple places and the best location
can be identified.

Since it is likely that many similar queries will be run over
time under similar system parameters, we construct a signature
for each query and store these signatures in the BigDAWG
database noted above. Any similar queries we encounter in
the future, which match an existing signature, do not need to
use training mode, since the best location has already been
identified.

In production mode, the system chooses the storage engine
arbitrarily for newly encountered queries. Over time, it will
run the query with each of the other viable engines in the
background. Thus, the best location will be identified over
a period of time rather than immediately before running the
query.

We expect any given federation to be in production mode
all the time or to start in training mode and then shift to
production mode. In either case, we assemble a database of
subqueries, their signatures, and their timings on various en-
gines. Over time, the BigDAWG monitor builds up a collection
of queries, their signature, their elapsed time and what nodes
the queries have been run on.

III. BIGDAWG MONITOR ARCHITECTURE

The BigDAWG middleware has four components: the query
planning module (Planner), the performance monitoring mod-
ule (Monitor), the data migration module (Migrator), and the
query execution module (Executor). When BigDAWG receives
an incoming query, the Planner parses the query and creates a
set of viable query plan trees with possible engines for each
collection of objects. The Planner then passes these trees to
the Monitor which uses existing performance information to
determine the tree with the best engine for each collection of
objects. This tree is given to the Executor which figures out
how to best join the collections of objects and then executes
the query, using the Migrator to move data from engine to
engine when the plan calls for it. See Figure 2 for a visual
overview of the organization and workflow of the system. In
this article, we concentrate on the architecture of the Monitor.

The Monitor maintains performance information on past
intra-island queries, matches new intra-island queries to sim-
ilar past queries, and stores migration metrics. For storing



migration metrics, the Monitor simply maintains an API
for storing and retrieving the metrics. The majority of the
Monitor’s functionality is devoted to query performance in-
formation.

Whenever BigDAWG encounters a new intra-island query
that is not similar to any previously seen queries, the Monitor
creates an entry for each possible Query Tree of that query. In
a Query Tree, each node represents either a piece of data or
the result of a database-specific action (DSA), which entails
executing a sub-query of the input on a specific database
instance. Examples of such sub-queries include transmitting
data, filtering according to predicates and receiving and joining
data. Edges represent the dependencies between the nodes.

The Monitor generally receives an ordered list of Query
Trees for each query from the Planner. For each Query Tree,
the Monitor stores the following:

• The index of the Query Tree in the ordered list provided
by the Planner.

• The query used to make the Query Trees.
• A signature for the query.
• The last time the Query Tree was run.
• The most recent cost, in terms of elapsed time, of running

the Query Tree.
Since the Planner constructs Query Trees deterministically

from a query together with a signature, the index of each
Query Tree is fixed. Thus, it suffices to store the query, the
signature, and the index to uniquely define each Query Tree.

To determine whether an incoming query is new or similar
to a previous query, the system uses signatures composed of
the following elements:

• A tree representing the structure of the query (sig-1).
• A set of the objects referenced and the predicates involved

(sig-2).
• A set of the constants in the query (sig-3).
Using these components, the system outputs a number from

0 to 1 representing how close the two signatures are where 0
means the two are identical and 1 means they are completely
different. Specifically, the system first determines the tree edit
distance, d, between the two queries’ sig-1s using a robust
tree edit distance algorithm [11]. It divides this distance by the
maximum possible tree edit distance for the two sig-1s. To do
this, the system finds the cost of constructing each tree, d1 and
d2, from scratch. Using these 3 distances, the system computes
t1 = d

max(d1,d2)
, which is the tree edit distance divided by the

maximum possible tree edit distance for the two sig-1s.
Next, the system determines the number of predicates,

s, shared between the two queries’ sig-2s as well as the
maximum lmax of the number of predicates in both sig-2s.
Using these numbers, it computes t2 = s

lmax
which is the

proportion of predicates shared between the two queries.
For sig-3, the Monitor determines the difference in the

number of constants for the two queries’ sig-3s. Since we
expect changes in individual constants to not affect the relative
ordering of Query Trees for a given query, we want to examine
whether the number of constants remains unchanged. To do

this the Monitor computes t3 = 1− min(a1,a2)
max(a1,a2)

where a1 and
a2 are the number of constants in each respective query. In
other words, the system finds the query with less constants
and divides its number of constants by that of the other query.

After computing all of these values, the Monitor returns the
resulting value v =

∑
i ti∗ci∑

i ci
where ci is a constant weight that

can be set. Let two queries be similar if v is less than some
constant and different otherwise.

Upon receiving a query from the Planner, the Monitor
compares the new query’s signature to that of each existing
query in the monitor. If the minimum v is such that the
two queries are similar, the Monitor gives the Planner the
performance information for the closest existing query. In the
case that no existing queries are similar, the Monitor stores
the query as a new benchmark.

If the Monitor is in training mode when a new query is
added, the Monitor calls the Executor on each of the Query
Trees for that query and stores the performance information
(runtimes). In the case that the Monitor is in production
mode, the Monitor stores each of the Query Trees without
determining their runtimes and initializes all of the runtimes
to a null value. After adding the new query, the Monitor gives
the Planner the runtimes for that query. In the case that all
of the runtimes are null, the Planner picks an arbitrary Query
Tree to execute.

It is likely that as BigDAWG continues to function, the
performance of individual queries will change. This could
happen for a variety of factors. For example, some storage
engines may scale with the number of entries better than
other storage engines, so as entries are added, the initial
timings may no longer be valid. Another possibility is that
many queries utilize a specific storage engine rather than other
storage engines, making those engines have a high load. In
order to address this problem, the Monitor periodically reruns
existing queries to update their timings based on the current
state of the system. To ensure that these timing updates do not
interfere with normal BigDAWG functions, the Monitor only
reruns queries when engines are not busy. For each island, the
Monitor periodically checks whether the load average for that
island is under some predetermined threshold. In these cases,
the Monitor finds a query in that island and reruns that query.

IV. ANALYSIS

In this section, we describe initial implementation results
of the Monitor. Ideally, the Monitor should speed up queries
by determining the best engine for each collection of objects
received (the engine that minimizes runtime). For the experi-
ments described, we use the following setup: two PostGRES
instances on the same physical machine containing the MIMIC
II dataset. One of the PostGRES instances contains roughly
half of the MIMIC II tables and the other instance contains the
remaining tables. The full schema of the MIMIC II dataset is
available in [12]. Ten different queries, each with two distinct
Query Trees, were used for testing.



TABLE I
TRAINING VS PRODUCTION MODE AVERAGE RUNTIMES

Query No. Training Mode Production Mode Without Monitor
1 826 ms 265 ms 281 ms
2 882 ms 190 ms 346 ms
3 62539 ms 20559 ms 20990 ms
4 491 ms 160 ms 166 ms
5 6592 ms 1977 ms 2308 ms
6 24294 ms 6146 ms 9074 ms
7 28165 ms 7648 ms 10259 ms
8 19073 ms 4496 ms 7289 ms
9 15806 ms 4652 ms 5577 ms
10 78487 ms 23496 ms 27496 ms

A. Training Mode Gains

From Table I, we see that running a query in training
mode takes more than three times as long as running a query
in production mode. This is because in training mode, the
Monitor tries every Query Tree for a query before allowing the
Executor to run the fastest Query Tree. Each query generates
two Query Trees which results in the expected longer query
time.

Clearly, running a query once the Monitor already has
information from the training mode for the query is faster than
generating all of this information and then running the query.
At first, it may seem that the training mode cost is prohibitively
high and it may be better to perform the query without this
mode. The “Without Monitor” column of Table I shows the
time required to execute the query in production mode without
having any information on the query’s Query Trees. In this
case, since BigDAWG does not have any information on which
Query Tree performs better, it randomly selects a Query Tree
to execute.

While the cost of running the query in production mode
varies compared to that of running without the Monitor, we
can see that in the best case, we can run a production mode
query in about 60% of the time as running without the monitor.
Thus, assuming queries are often rerun or we often see similar
queries, the expense of the training mode run can be justified
in the long run.

B. Response to Environmental Changes

Another factor that plays a large part in performance is
that the relative order of Query Tree execution can change
depending on the environment. A Query Tree that initially
performs better than others can perform worse relative to other
Query Trees depending on factors such as increased load on
specific engines. Thus, it is necessary to evaluate whether the
Monitor adapts to changes in the environment.

In general, the Monitor is able to update its performance
metrics for queries over time. After applying load, we observed
that, in general, the monitor adapts within a few seconds.
However, the rate at which the Monitor adapts depends on
the number of queries in the system. That is, the more queries
stored by the Monitor, the longer it takes for a given query to

stay up-to-date. This is due to the Monitor updating its perfor-
mance metrics by re-running the least recently updated query
when the load average is under a predetermined threshold.
Thus, if the environment changes faster than the rate that the
Monitor can run all of its queries, the Monitor may provide
outdated metrics for a subset of the queries stored. This
may be problematic for queries where several Query Trees
have similar performance characteristics. For such queries,
it is possible that the Monitor will always rank the Query
Trees incorrectly if it is always outdated. For queries where
some Query Trees perform vastly better than others, it is
unlikely that changes in the environment can cause the better
performing queries to become significantly worse than the
previously underperforming queries.

C. Matching Signatures

One of the main components of the Monitor module is
in matching new queries with existing queries using the
performance information of previous queries to determine the
optimal query plan for new queries. In order to verify whether
the Monitor matches queries in such a way that existing
queries provide useful information for new queries, for each
of the 10 queries, we constructed the following four types of
queries:

• A query where the order of the predicates of the existing
query are changed

• A query where one of the constants of the query are
replaced with a similar constants. Here, we can measure
similarity by comparing the number of entries in each
table that has that constant. Two constants are similar if
the number of entries is approximately the same for both
constants.

• A query where one of the constants of the query are
replaced with a dissimilar constants.

• A query where one of the tables involved in the query is
replaced with a similar sized table.

If the Monitor matches queries correctly, it should recognize
that changing the order of the predicates does not actually
change the query. During our testing, we found that queries
where the order of the predicates are changed are always
matched correctly. A subset of the results from executing the
previously mentioned 10 queries are summarized in Tables II-
VI. we can see that changing the order of predicates does
not impact the runtime of the query as expected. Thus, for
queries where the structure of the query changed but all else
is identical, the Monitor is able to match them correctly with
existing queries.

In general, the Monitor should not expect queries where
a table has been swapped to perform similarly to the original
queries. This is because the Monitor does not have any context
on the similarity of tables apart from size and names of the
tables. While it is possible that similar sized tables have similar
data, the Monitor has no way of ensuring this. Furthermore, it
is difficult to identify whether two tables are similar through
their names.



TABLE II
QUERY 1 AVERAGE RUNTIMES

Query Type Query Tree 1 Query Tree 2
Base query 265 ms 296 ms
Predicate order 254 ms 296 ms
Similar constant 278 ms 290 ms
Skewed constant 346 ms 906 ms
Table swap 542 ms 619 ms

TABLE III
QUERY 2 AVERAGE RUNTIMES

Query Type Query Tree 1 Query Tree 2
Base query 502 ms 190 ms
Predicate order 475 ms 169 ms
Similar constant 479 ms 206 ms
Skewed constant 93023 ms 92321 ms
Table swap 1156 ms 180 ms

TABLE IV
QUERY 4 AVERAGE RUNTIMES

Query Type Query Tree 1 Query Tree 2
Base query 171 ms 160 ms
Predicate order 165 ms 156 ms
Similar constant 180 ms 180 ms
Skewed constant 226 ms 210 ms
Table swap 620 ms 621 ms

TABLE V
QUERY 5 AVERAGE RUNTIMES

Query Type Query Tree 1 Query Tree 2
Base query 2638 ms 1977 ms
Predicate order 2563 ms 2054 ms
Similar constant 2625 ms 2015 ms
Skewed constant 4486 ms 3851 ms
Table swap 29781 ms 32474 ms

TABLE VI
QUERY 8 AVERAGE RUNTIMES

Query Type Query Tree 1 Query Tree 2
Base query 4496 ms 10081 ms
Predicate order 4483 ms 10335 ms
Similar constant 4425 ms 10383 ms
Skewed constant 8456 ms 21385 ms
Table swap 664 ms 317 ms

Our results from Tables II- VI support this. We can see that
while swapping a table often results in similar runtimes, it can
also result in completely disparate runtimes. Table V shows an
example of how changing the table can result in completely
different outcomes. For the base query, Query Tree 2 performs
better than Query Tree 1, after swapping tables, we can see that
Query Tree 1 outperforms Query Tree 2. Table VI provides
another example of where swapping a table can change which
Query Tree is best. In general, we cannot predict the result
of swapping a table, so the Monitor treats queries with tables
swapped as dissimilar.

Currently, the Monitor successfully matches all queries
where the constants in the query are changed and can be
verified by inspecting Tables II- VI. In general, replacing a
constant with a similar constant also results in very similar
runtimes for all of the test queries. Furthermore, the Monitor
preserves the relative order of Query Trees with skewed
constants.

To summarize the overall results for all 10 queries, we
present the ratio of runtime in executing under Query Tree
1 with Query Tree 2 in Figure 3. For most queries, we would
expect that similar queries maintain similar relative runtime
(this indicates that the monitor is correctly identifying similar
queries). Recall that the Monitor considers all four types of
constructed queries to be similar other than queries where a
table has been swapped. Thus, we would expect that the ratio
of Query Tree 1 runtimes to Query Tree 2 runtimes will stay
constant across the first four bars of each query. For the most
part, we do see this result. For example, for query 8, the ratio
of runtimes is nearly the same across the first four bars.

However, there a few exceptions. For queries 1 and 2 either
the initial query or the query after replacement ran for a trivial
amount of time (for example, from Table III, we see that the
overall runtime of the query before changing to a skewed
constant is in the 100s of milliseconds). In these cases, the
differences in the runtimes between Query Trees are largely
dominated by constant factors such as Monitor overhead. To
avoid these problems, users can train the Monitor on queries
that take a non-trivial amount of time. This guarantees that
replacing the query with any of the 3 similar types of queries
will result in queries that exhibit either similar behavior or run
in a trivial amount of time.

V. DISCUSSION AND CONCLUSION

Currently, the Monitor finds matching queries fairly ineffi-
ciently. Specifically, the Monitor finds the distance, v, between
every unique query in the system and the incoming query. It is
clear that the overhead necessary to match an incoming query
will increase linearly with the number of benchmark queries
supported by the Monitor. While this is not a large problem at
the moment since we have very few queries, this can become
a much bigger problem in the future. One possible way to
address this is by keying queries by one of the signatures,
such as sig-1, and only determining v for queries that match
that signature. The downside of this is method is that it is
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Fig. 3. Ten polystore queries applied to the MIMIC II dataset. The y-axis indicates the ratio between running a particular query with two different query
plans. Ideally, the ratio of runtimes should be nearly the same for a similar query and query type.

possible that the Monitor can provide useful metrics even for
queries that differ on that signature.

Another problem with the Monitor is that it is possible for
the Monitor to always provide outdated metrics. In order to
deal with this problem, it might be a good idea to select
old queries to run in a different order than least recently
updated. Instead, one could try choosing old queries to run
in a randomized manner, weighted by time since last updated.
More testing needs to be done to determine the best order to
select queries to re-run.

Overall, the Monitor matches queries where constants have
been replaced or when the order of predicates of the queries
are changed. Based on my results, for all of these matched
queries, the Monitor provides useful metrics as long as the
initial benchmark queries run in non-trivial amounts of time.
For queries where a table has been replaced, the Monitor
cannot reliable provide useful metrics and thus does not match
such queries.
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