
Cross-Engine Query Execution in Federated
Database Systems

Ankush M. Gupta∗, Vijay Gadepally∗†, Michael Stonebraker∗

∗MIT CSAIL †MIT Lincoln Laboratory
{ankush, vijayg, stonebraker}@csail.mit.edu

Abstract—We have developed a reference implementation of
the BigDAWG system: a new architecture for future Big Data
applications, guided by the philosophy that “one size does not
fit all”. Such applications not only call for large-scale analytics,
but also for real-time streaming support, smaller analytics at
interactive speeds, data visualization, and cross-storage-system
queries. The importance and effectiveness of such a system
has been demonstrated in a hospital application using data
from an intensive care unit (ICU). In this article, we describe
the implementation and evaluation of the cross-system Query
Executor. In particular, we focus on cross-engine shuffle joins
within the BigDAWG system, and evaluate various strategies of
computing them when faced with varying degrees of data skew.

I. INTRODUCTION

In the recent past, the database community has produced a
wide variety of data models and data management systems.
Many of these new systems have targeted vertically scaled
SQL engines such as those that rely on in-memory online
transaction processing (OLTP) workloads [1], [2]. In parallel,
there has been an explosion of NoSQL engines exploiting a
range of data models (typically operating on flexible storage
formats such as JSON or key-value pairs). OLTP and stream
processing engines are poised to satisfy the need for real-
time stream processing and analytics for domains such as
the internet of things. Specialized data management systems
are often orders of magnitude faster for their specialized data
models than other database systems, these systems exemplify
the adage that “one size does not fit all” for data management
solutions [3].

It is now common to see applications that must take
advantage of disparate database management systems to sup-
port complex analytics and applications. However, this often
requires the construction of one-off connectors and shims
to enable such analytics. Recently, we have developed the
Big Data Analytics Working Group (BigDAWG) polystore
system [4], [5] to provide a single interface for disparate
data models, database engines and programming models. The
BigDAWG stack was applied to a a complex medical dataset -
MIMIC II [6] and supports SciDB[7] to store MIMIC II time-
series data, Apache Accumulo [8], [9], [10] to store freeform
text notes, and Postgres[11] to store clinical data.

Complex datasets and analytics that touch independent
database engines requires support for cross-engine queries.
These independent systems with correlated data. For example,

in our reference implementation, to locate the diagnoses of
patients with irregular heart rhythms, one will need to extract
data from both SciDB and Postgres. To find doctor’s notes
associated with a prescription drug, one would query Accu-
mulo and Postgres. Such cross-engine queries rely on complex
query planning, execution strategies and data migration.

In this article, we describe the process in which cross-engine
queries are evaluated in the BigDAWG system. Specifically,
we design a multi-step framework for performing “shuffle
joins” – joins where data is migrated to multiple different
engines and computed in parallel. We then implement and
evaluate various methods for completing each step of the
shuffle join framework, particularly focusing on handling
varying degrees of skewness in the distribution of data.

A. BigDawg System Modules

The BigDAWG system has four core modules: the Query
Planner, the Performance Monitor, the Data Migration and
the Query Executor (see [12], [13], [14], [15] for a more
thorough exploration of these modules and their interfaces).
In this article, we concentrate on the query Executor.

The Executor is responsible for performing the physical
execution of a logical query plan as provided by the Planner
module. The planner module provides the Executor with a list
of nodes and tasks that must be performed and their depen-
dencies. The Executor performs as many nodes of the logical
plan in parallel on different engines as possible, blocking on
nodes with unfulfilled dependencies until they can be executed.
Currently, we special operations such as the Union operator
and Join operator are handled by the Executor.

This article concentrates on the equijoin operation (for
simplicity, we refer to this simply as “join”) performed across
different engines within an Island of the BigDAWG polystore
system. Currently, the Planner module only provides the Ex-
ecutor with binary joins, however the approach and technique
described in this article can scale to any number of engines.

Since parallel joins are vulnerable to the presence of skew
in the underlying data, we also discuss our approach to model
the distribution of skew and take advantage of skew when
possible. The most efficient way to achieve fast, parallelizable
join execution of large tables across multiple engines is for the
matching tuples of the two inputs to always be hosted on the
same engine. This allows for parallel tuple comparison where
each engine joins local data. Specifically, we extend prior work



on skew performance mitigation [16] to generalize approaches
for shuffle-joins across worker nodes within SciDB.

II. SHUFFLE JOIN FRAMEWORK

Given a shuffle join operation, the BigDAWG Planner
determines a logical plan for evaluating a query and passes this
to the Executor. The Executor performs all nodes of the logical
query plan received in parallel, blocking until any necessary
dependency nodes have been completed. For nodes which
translate directly into queries on a single engine, this is done
by delegating execution to the engine itself. Executing nodes
that represent cross-engine operations, however, takes place in
several phases, moving data between engines by leveraging
the data migrator. This section details the execution pipeline.

A. Execution Pipeline

The shuffle join optimization framework assigns join-units,
small non-overlapping ranges of tuples (rows in PostgreSQL,
cells in SciDB, key-value pairs in Accumulo, etc.), to partic-
ipating engines in order to efficiently use network bandwidth
and balance the tuple comparison load. Each join-unit consists
of a fraction of the full query predicate, and tuples are assigned
to a join-unit based on the value of their join attribute.
Tuples belonging to a single join-unit may be distributed over
any number of engines participating in the join, but must
be brought to the same engine in order for the join to be
computed. The following steps are used when executing a
query:

1) Skew Examination: The distribution of the join at-
tributes on each participating engine is extracted. In
some join strategies (detailed in Section II-C), this step
may be skipped altogether.

2) Join-Unit Assignment The distribution of attributes
is utilized to assign tuples to be joined on specific
participating engines.

3) Join-Unit Colocation The join units are physically
migrated to the engines to which they are assigned. This
phase relies on the Migrator [14] to migrate portions of
the join tables in parallel.

4) Tuple Comparison The Join operation is performed
as parallel local queries with the tuples that have been
migrated to their assigned engines.

5) Join Result Union The outputs of each participating en-
gine’s tuple comparison step are migrated and Unioned
at the single end-destination engine specified in the
logical query plan.

The total execution time of a cross engine join is largely
determined by the time taken to perform the above steps. The
Executor delegates the Join-Unit Colocation phase and Join
Result Union phases to the Migrator module, and delegates
the Tuple Comparison to a given database engine. For the
Executor, a majority of the time is taken in determing the
skew distribution and join-unit assignments. We detail these
two phases in the following sections.

B. Skew Examination Strategies

The Skew Examination phase is the first step of the shuffle
join execution. In this phase, the Executor retrieves informa-
tion about the data distribution of each engine involved in the
join which can be utilized in determinig how join-units are
assigned and migrated in future stages of the shuffle join. In
this phase, a histogram detailing the distribution of the join
attribute for each table is either created or extracted from the
internal statistics utilized by each engine.

A skew examination strategy consists of a function for each
distinct database engine that retrieves the following types of
data:

Histogram data consists of a series of histogram
buckets. The number of buckets is a specified as a
constant, and remains the same for all histograms
within the same join operation. The bounds for each
bucket is determined by utilizing the minimum and
maximum values the Executor stores after evaluating
the plan nodes that created the tables being joined,
or are retrieved from the engine if the tables already
existed prior to the execution of the query plan. The
value for each bucket is the count of elements on
the engine whose join attribute falls within the given
range.
Hotspot data consists of data that is of much finer
granularity than a histogram bucket. A hotspot is
a single value of a join attribute that has a par-
ticularly high occurrence in a given engine. The
value associated with each hotspot value is the count
of items that have an identical value for their join
attribute. Hotspot data is only utilized if an statistics
are extracted from an engine’s internal planner, and
if that engine’s planner provides this information.

A skew examination returns histogram data, but not neces-
sarily hotspot data. The resulting information is then used in
the next step, the tuple assignment.

In the assignment strategies and analysis presented in this
article, both histogram buckets and hotspot values are treated
as join-units by the shuffle join planner. If there exists a hotspot
value that is also within the range contained by a histogram
bucket, that histogram bucket is treated as if it does not contain
the hotspot, and the hotspot is treated as if it were a separate
bucket.

1) Full Table Scan: The full table scan strategy involves
scanning every element involved in the join, for every partic-
ipating table, constructing a completely accurate histogram of
the distribution of join attributes on each engine.

This strategy allows for perfectly accurate histogram data,
but comes at the expense of slower performance. Depending
on the circumstances, the overhead from the increased time in
skew examination may result in better overall performance if
it allows for join units to be more efficiently allocated.

2) Table Sampling: An alternative approach to generating
distribution information is to sample the data in the participat-
ing join tables rather than performing a full table scan. In this



method, a fixed number or proportion of tuples are sampled at
random from each table, and a histogram is populated with
the results. The histogram bucket counts are then rescaled
with respect to the total number of tuples on the local engine.
Wherever possible, we utilize any sampling statistics provided
by the engine’s built-in query planner instead of sampling the
table by performing a query.

C. Join-Unit Assignment Strategies

Once information on the skew of each participating table
has been collected, the Executor must determine how to best
allocate each join-unit represented in the tables to specific
engines. The strategy of assigning of tuples to participat-
ing engines can have large performance implications on the
runtime of each phase of the shuffle join framework (listed
in Section II-A). Some assignment approaches can be more
computationally intensive depending on the characteristics of
the underlying data to be joined. In cases of simple assignment
strategies, coarser skew examination strategies that lead to
large performance benefits may be utilized.

Another impact of the join-unit assignment comes from
migrating tuples between engines. We have found that the
network is often a scarce resource for joins in a shared-nothing
architecture [17]. In addition, there is often a significant
amount of overhead associated with utilizing the Migrator
module, even for relatively small datasets. Because computa-
tion of a join at an engine is blocked until all tuples assigned
to that engine have successfully been migrated, the number of
migrations that an assignment of join-units requires has direct
impact on the overall runtime of the Join. Assignments which
require migrating fewer tuples can begin the Tuple Comparison
phase much more quickly than those which involve migrating
a considerably larger amount of tuples.

A final impact of join-unit assignment on overall perfor-
mance is in the runtime of the Tuple-Comparison Phase.
The more tuples that are assigned to a specific participating
engine, the longer that engine will take to complete its
tuple-comparison phase. Though tuple comparison phase is
parallelized across all participating engines, the total runtime
of the join is bottlenecked by the engine which takes the
longest to complete its Tuple Comparison phase and send its
results to the destination specified by the Planner module.

In the following sections, we look at potential Join-Unit
assignments and their tradeoffs with respect to the above
factors.

1) Full Table Assignment: This category of assignment can
be viewed as treating an entire table as a join-unit. This allows
assignments to be performed with minimal skew examination.
By doing so, runtime savings can be achieved by limiting the
total number of migrations involved in the join process.

These assignment methods come with the tradeoff of poten-
tially migrating excess data in the form of tuples that have no
matching values with which to join at their destination engine.
Though probabilistic data structures such as Bloom Filters can
be used to mitigate this factor. in our current implementation
we have not addressed this.

a) Destination Full Broadcast: This type of Full Table
Assignment moves all data to the engine specified by the
logical plan generated by the Planner, regardless of the size of
the participating tables. The join is then computed locally on
this destination engine. This assignment strategy eliminates the
need for the Skew Examination and Join Result Union phase.
Additionally, the simplicity of this assignment strategy allows
this assignment to be computed efficiently and quickly.

This assignment strategy may perform slowly when non-
destination tables are excessively large and skewed, or when
the destination engine performs the join at a significantly
slower pace than alternative engines. In these cases, is possible
that the cost of migrating unnecessary tuples to a single poten-
tially slower engine dominates the savings from not needing
to perform a finer-grain skew examination and corresponding
assignment strategy.

b) Minimal Full Broadcast: This planning model moves
smaller tables involved in the join to the engine of the largest
table. The skew examination phase for this assignment strategy
treats the universe of all potential join attribute values as a
single join-unit, eliminating the skew examination phase in
favor of a simple count operation.

Compared to the Destination Full Broadcast assignment
strategy, the Minimum Full Broadcast avoids situations where
a single large table dominates migration times. The downside
to this approach is that the computed join result may need to
be migrated to the destination engine specified in the Planner’s
logical plan.

2) Join-Attribute Assignment: Based on join attributes,
there may be many join-unit assignemtn strategies. Specifi-
cally, we discuss the skew-agnostic Hash Assignment, and the
skew-aware Minimum Bandwidth Heuristic and Tabu Search
assignments.

The skew-aware strategies rely on data provided by the
Skew Examination phase to make better informed assignments
of the data being joined.

Though join-attribute assignments can result in more bal-
anced migration and execution times, it is important to note
that every participating engine could have migrations both to
and from other participating engines, resulting in O(n2) total
simultaneous migrations with respect to the number of engines.

a) Hash Assignment: The Hash Assignment strategy is
a skew-agnostic strategy. It randomly assigns tuples to each
participating engine in the join such that all tuples with the
same join attribute value end up on the same engine. It does
so by simply hashing each tuple’s join attribute, and mapping
it to an engine using a common hash function H(x) shared
across all participating engines.

For a given tuple, t, having join attribute at over k engines,
the Executor determines the engine n to which the tuple is
assigned by: n = H(at) mod k

This join strategy does not require the Skew Examination
phase to take place. If the data has a uniform distribution
across all participating engines, the Hash assignment strategy
has a balanced number of migrations between participating
engines in expectation.



b) Minimum Bandwidth Heuristic: The first skew-aware
assignment strategy we explore is the the Minimum Band-
width Heuristic (MBH), adopted from SciDB [16]. The MBH
assumes that the overhead of migration dominates the overall
runtime, and attempts to optimize runtime by greedily assign-
ing join-units to the engine that already possesses the majority
of the tuples for that join-unit. We refer to the chosen engine
for each join unit as the unit’s center of gravity.

For a given join unit, i, having frequency
{fi,1, fi,2, . . . , fi,k} over k engines, the Executor identifies
the engine n with the most tuples from join unit i:

n = argmax
e=[1,k]

fi,e

and assigns the join unit to engine n.
This heuristic minimizes the amount of data transmitted

in the Join-Unit Colocation phase. In doing so, it attempts
to complete the Join-Unit Colocation phase as quickly as
possible, so that the parallelized tuple comparison process
can begin on each participating engine, unbound by network
constraints.

c) Tabu Search: The final join-unit assignment strat-
egy detailed in this article is based on a variant of the
Tabu Search [18] proposed for SciDB skew-aware join han-
dling [16]. This assignment strategy is skew-aware, and begins
with the assignment provided by the MBH approach. It then
searches for a locally optimal result by exploring engines
with a higher-than-average cost associated with them, and
attempting to reassign their join-units to engines with lower
cost. Once a join-unit has been assigned to a given engine,
the unit-to-engine pair is noted in the Tabu list which ensures
that this assignment is never considered again. The Tabu
search completes once it is impossible to improve the plan by
reducing the load of the engines. Pseudocode for the modified
Tabu Search algorithm utilized by SciDB and implemented in
the BigDAWG executor for join-unit assignment is shown in
Algorithm 1.

The approach of formulating the Tabu List as a join-unit
to engine mapping is borrowed from SciDB’s shuffle join
handling. This strategy significantly reduces the size of the
sample space from the exponential O(2i∗j) to the polynomial,
O(i ∗ j), where i is the total number of join-units and j
is the total number of engines participating in the shuffle
join. Because the algorithm unburdens a single engine at a
time, the bottleneck engine is likely to change during a single
round of unburdening. This formulation of the Tabu List also
prevents the algorithm from getting stuck in loops, wherein a
single join-unit is cyclically reassigned between multiple non-
bottleneck nodes.

Cost Estimation: The nature of Tabu Search necessitates
a mechanism of evaluating the cost of a given query plan.
The primary functions that the cost estimation should consider
include the cost of migrating join units to a given engine, and
the cost of comparing the migrated tuples once the migrations
have completed.

Since the rate at which each distinct engine completes these
steps varies between engines, a cost estimation mechanism
that is able to handle varying costs per engine is needed. The
approach we utilize is given in Algorithm 1. The cost for a
specific engine is determined by the sum of the most expensive
inbound migration and the cost of comparing all tuples being
joined on the given engine. Both costs are modeled as a simple
quadratic function of the number of tuples.

Algorithm 1 Tabu Search per-engine costs
function COMPUTEENGINECOSTS(A)

Input: A . Current assignments
Output: C . Map of engines to per-engine costs

A← {}
for all j ∈ A.engines do

A.put(COMPUTESINGLEENGINECOST(j, A))
return A

function COMPUTESINGLEENGINECOST(j, A)
Input: j, A . Desired engine, Current assignments
Output: cost . Cost associated with engine j

maxMigrationCost ← 0
n ← 0
for all j′ ∈ A.engines do

m← A.getAssignedTuples(j′, j).count()
(c1, c2)← MigrationConstants.get(j, j′)
maxMigrationCost ← max(c1 ∗ m2 + c2 ∗ m,

maxMigrationCost)
n← n+m

(c3, c4)←ComparisonConstants.get(j)
tupleComparisonCost ← c3 ∗ n2 + c4 ∗ n
cost ← maxMigrationCost + tupleComparisonCost
return cost

As illustrated in Algorithm 2, the cost associated with
the overall plan is simply equivalent to the maximum of all
engines. This is because every engine must complete its local
executions before the results can be be used as inputs to the
Union operator and returned to the user.

Algorithm 2 Tabu Search total cost
function COMPUTETOTALCOST(A)

costs ← COMPUTEENGINECOSTS(A)
return MAX(costs)

III. PERFORMANCE RESULTS

In this section, we analyze the performance of the Skew
Examination strategies described in Section II-B and the Join-
Unit Assignment strategies described in Section II-C.

A. Experimental Setup

For the purpose of this article, we concentrate on binary
joins. However, the techniques outlined in previous sections
can scale to any number of concurrent nodes. As a result,
we perform our skew examination and join-unit assignment



evaluations on a system consisting of two virtualized Post-
greSQL instances of different capacity. The larger engine
has approximately 150GB of data and runs on four 3.4GHz
processor cores with 32GB RAM, while the other instance has
approximately 75GB of data with a single 3.4GHz processor
core and 8GB RAM. Both systems use a switched network
and SATA disks. We consider the the cross-engine Join work-
load of SELECT * FROM A, B WHERE A.id = B.id.
A trial consists of this workload run once with the destination
engine specified as the larger engine, and once with the the
smaller. Each trial was started with a cold cache and executed
five times. We report the average duaration of each phase of
execution.

Our experiments use synthetic data sampled from a Zipf
(power law) distribution to control the level of skew in the
tables. This distribution’s skew is characterized by the param-
eter α [19]. Higher values of α denote greater imbalance data
distribution. The experiments begin with uniformly distributed
data (α = 0), where all join-units are the same size, and
gradually increase the skew by 0.5 until reaching a maximum
of α = 2.0.

B. Skew Examination Strategy Evaluation

In order to compare the Full Table Scan and Sampling skew
examination strategies, we utilize skew examination strategies
to execute the workload by first using the Minimum Bandwidth
Heuristic (MBH), and then using the Tabu Search assignment
strategy. We then compare the differences in execution times
for skew examination, and observe the impact of skew exam-
ination strategy on the performance of other phases involved
in the shuffle join.

The benchmark results for both skew examination strate-
gies with the Minimum Bandwidth Heuristic assignment are
shown in Figure 1. The figures illustrate the total runtime
of the benchmark query under different Zipf distributions
(parametrized by α) and segmented by time taken for each
phase. As expected, the portion of total runtime consumed by
the Skew Examination phase (shown in black) is lower when
using the sampling strategy rather than the full table scan.

We now attempt to determine if there is a significant
difference in the quality of information generated by each
strategy by examining their impact on the future phases of the
overall join. As observed in Figure 1, when the skew of the
data is low, the sampling strategy may result in less efficient
assignment strategies. As skew increases, we notice that the
post-examination phases have approximately equivalent run-
times. In almost all cases, the fact that Skew Examination
under sampling is faster than under a full table scan more than
makes up for any discrepancy between the later phases as a
result of suboptimal join-unit assignments, resulting in lower
runtimes while sampling. Similar results were found with the
Tabu Search assignment strategy as well.

From these results, we conclude that the Sampling skew
examination strategy is superior to the Full Table Scan strategy
for the Skew Examination phase. Further, the total runtime is
either comparable to or better than the Table Scan strategy

0

5

10

15

20

25

30

35

40

45

50

Sc
an

Sa
m

pl
e

Sc
an

Sa
m

pl
e

Sc
an

Sa
m

pl
e

Sc
an

Sa
m

pl
e

Sc
an

Sa
m

pl
e

0 0.5 1 1.5 2

Q
ue

ry
 D

ur
at

io
n 

(M
in

s)

Zipfian Alpha

union
comparison
colocation
assignment
examination

Fig. 1: Join performance with varying skew and skew ex-
amination strategies, using Minimum Bandwidth Heuristic
assignment

0

10

20

30

40

50

60

70

80

90

100

D
FB

M
FB

H
as

h
M

B
H

Ta
bu

D
FB

M
FB

H
as

h
M

B
H

Ta
bu

D
FB

M
FB

H
as

h
M

B
H

Ta
bu

D
FB

M
FB

H
as

h
M

B
H

Ta
bu

D
FB

M
FB

H
as

h
M

B
H

Ta
bu

0 0.5 1 1.5 2

Q
ue

ry
 D

ur
at

io
n 

(M
in

s)

Zipfian Alpha

examination assignment colocation comparison union

Fig. 2: Join with varying skew and assignment strategies for
each of the five phases described in Section II-A.

when accounting for all phases involved in the shuffle join.
This relative difference is more pronounced in high-skew
workloads.

C. Join-Unit Assignment Strategy Evaluation

Next, we discuss the performance differences between all
Join-Unit Assignment strategies described in II-C as the skew
factor (parametrized by α ) is increased. Since the sampling
skew examination strategy outperforms the full table scan
strategy, we concentrate on the Sampling strategy whenever
skew examination is required. Figure 2 illustrates the per-
formance of the plan generated by all assignment strategies
given the experimental workload as the skew of the distribution
varies.



From Figure 2, we observe that when α = 0, the Hash
strategy performs relatively well. It has tuple colocation per-
formance virtually identical to the MBH strategy, due to
the uniform distribution of the data. The only strategy that
outperforms the Hash strategy at α = 0 is the Tabu Search
strategy, due to its ability to more effectively account for the
fact that the different engines have differing performance in
the tuple comparison phase.

We observe that as α increases, the time needed to migrate
the data based on skew-agnostic assignments (DFB, MFB,
and Hash) grows uncontrollably. Conversely, the MBH and
Tabu strategies are able to leverage the skew in the data,
and perform more efficient tuple assignments as the degree
of skew increases. The Tabu approach can further utilize its
cost estimation information to balance tuple comparison load
across the two engines, and is competitive with the next-best
assignment strategy with all ranges of skew.

IV. CONCLUSION AND FUTURE WORK

In this article, we introduce a shuffle join Executor that is
able to efficiently execute operations that span across multiple
database engines. Initial results tested with cross-engine joins
perform well in the presence of skewed data. The shuffle
join methodology includes a multi-step process that exploits
random sampling and effective join-unit assignment strategies
to minimize the computational and network resources required
to compute joins. The Executor can conduct the necessary
migrations of data across participating engines, and execute
all necessary operators for exploiting any available skew in
the data in order to efficiently compute Join results. Empirical
results indicate that this framework can consistently achieve
significant performance improvements compared to skew-
agnostic approaches in the presence of skewed data, while
suffering no significant performance difference compared to
skew-agnostic methods when utilized over non-skewed, uni-
form distributions.

Future work for improving the shuffle join framework in
BigDAWG include utilizing probablistic data structures to
minimize data transfer, determining the constants used in the
Tabu Search cost model by interfacing with the Monitor, and
abstracting the strategies to function across islands in the
BigDAWG system.

ACKNOWLEDGMENT

This work was made possible in part by the Intel Science
and Technology Center for Big Data. The authors would also
like to thank Aaron Elmore, Adam Dziedzic, Jennie Duggan,
Zuohao She, Peinan Chen, and Sam Madden for their help in
developing this work.

References

[1] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom, “Models
and issues in data stream systems,” in Proceedings of the Twenty-first
ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems, ser. PODS ’02. New York, NY, USA: ACM, 2002, pp. 1–16.
[Online]. Available: http://doi.acm.org/10.1145/543613.543615

[2] R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin, S. Zdonik,
E. P. C. Jones, S. Madden, M. Stonebraker, Y. Zhang, J. Hugg,
and D. J. Abadi, “H-store: A high-performance, distributed main
memory transaction processing system,” Proc. VLDB Endow., vol. 1,
no. 2, pp. 1496–1499, Aug. 2008. [Online]. Available: http:
//dx.doi.org/10.14778/1454159.1454211

[3] M. Stonebraker, C. Bear, U. Çetintemel, M. Cherniack, T. Ge,
N. Hachem, S. Harizopoulos, J. Lifter, J. Rogers, and S. Zdonik, “One
size fits all? part 2: Benchmarking results,” Proc. CIDR, 2007.

[4] A. Elmore, J. Duggan, M. Stonebraker, M. Balazinska, U. Cetintemel,
V. Gadepally, J. Heer, B. Howe, J. Kepner, T. Kraska, S. Madden,
D. Maier, T. Mattson, S. Papadopoulos, J. Parkhurst, N. Tatbul,
M. Vartak, and S. Zdonik, “A demonstration of the bigdawg polystore
system,” Proc. VLDB Endow., vol. 8, no. 12, pp. 1908–1911, Aug.
2015. [Online]. Available: http://dx.doi.org/10.14778/2824032.2824098

[5] J. Duggan, A. J. Elmore, M. Stonebraker, M. Balazinska, B. Howe,
J. Kepner, S. Madden, D. Maier, T. Mattson, and S. Zdonik, “The
bigdawg polystore system,” SIGMOD Rec., vol. 44, no. 2, pp. 11–16,
Aug. 2015. [Online]. Available: http://doi.acm.org/10.1145/2814710.
2814713

[6] M. Saeed, M. Villarroel, A. T. Reisner, G. Clifford, L.-W. Lehman,
G. Moody, T. Heldt, T. H. Kyaw, B. Moody, and R. G. Mark,
“Multiparameter intelligent monitoring in intensive care ii (mimic-
ii): A public-access intensive care unit database,” Critical care
medicine, vol. 39, no. 5, pp. 952–960, 05 2011. [Online]. Available:
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3124312/

[7] M. Stonebraker, P. Brown, A. Poliakov, and S. Raman, “The
architecture of scidb,” in Proceedings of the 23rd International
Conference on Scientific and Statistical Database Management, ser.
SSDBM’11. Berlin, Heidelberg: Springer-Verlag, 2011, pp. 1–16.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2032397.2032399

[8] “Accumulo,” https://accumulo.apache.org/.
[9] V. Gadepally, J. Kepner, W. Arcand, D. Bestor, B. Bergeron, C. Byun,

L. Edwards, M. Hubbell, P. Michaleas, J. Mullen, A. Prout, A. Rosa,
C. Yee, and A. Reuther, “D4m: Bringing associative arrays to database
engines,” in High Performance Extreme Computing Conference (HPEC),
2015 IEEE, Sept 2015, pp. 1–6.

[10] J. Kepner, W. Arcand, D. Bestor, B. Bergeron, C. Byun, V. Gadepally,
M. Hubbell, P. Michaleas, J. Mullen, A. Prout, A. Reuther, A. Rosa, and
C. Yee, “Achieving 100,000,000 database inserts per second using accu-
mulo and d4m,” in High Performance Extreme Computing Conference
(HPEC), 2014 IEEE, Sept 2014, pp. 1–6.

[11] M. Stonebraker and G. Kemnitz, “The postgres next generation database
management system,” Commun. ACM, vol. 34, no. 10, pp. 78–92, Oct.
1991. [Online]. Available: http://doi.acm.org/10.1145/125223.125262

[12] V. Gadepally, P. Chen, J. Duggan, A. Elmore, B. Haynes, J. Kepner,
S. Madden, T. Mattson, and M. Stonebraker, “The bigdawg polystore
system,” in High Performance Extreme Computing Conference (HPEC),
2016 IEEE, Submitted.

[13] S. Zuohao and J. Duggan, “Bigdawg polystore query optimization
through semantic equivalences,” in High Performance Extreme Com-
puting Conference (HPEC), 2016 IEEE, Submitted.

[14] A. Dziedzic, A. Elmore, and M. Stonebraker, “Data transformation
and migration in polystores,” in High Performance Extreme Computing
Conference (HPEC), 2016 IEEE, Submitted.

[15] P. Chen, V. Gadepally, and M. Stonebraker, “The bigdawg monitor-
ing framework,” in High Performance Extreme Computing Conference
(HPEC), 2016 IEEE, Submitted.

[16] J. Duggan, O. Papaemmanouil, L. Battle, and M. Stonebraker, “Skew-
aware join optimization for array databases,” in Proceedings of the 2015
ACM SIGMOD International Conference on Management of Data, ser.
SIGMOD ’15. New York, NY, USA: ACM, 2015, pp. 123–135.
[Online]. Available: http://doi.acm.org/10.1145/2723372.2723709

[17] M. Mehta and D. J. DeWitt, “Data placement in shared-nothing parallel
database systems,” The VLDB Journal—The International Journal on
Very Large Data Bases, vol. 6, no. 1, pp. 53–72, 1997.

[18] F. Glover, “Future paths for integer programming and links to
artificial intelligence,” Comput. Oper. Res., vol. 13, no. 5, pp. 533–549,
May 1986. [Online]. Available: http://dx.doi.org/10.1016/0305-0548(86)
90048-1

[19] V. Gadepally and J. Kepner, “Using a power law distribution to describe
big data,” in High Performance Extreme Computing Conference (HPEC),
2015 IEEE. IEEE, 2015, pp. 1–5.

http://doi.acm.org/10.1145/543613.543615
http://dx.doi.org/10.14778/1454159.1454211
http://dx.doi.org/10.14778/1454159.1454211
http://dx.doi.org/10.14778/2824032.2824098
http://doi.acm.org/10.1145/2814710.2814713
http://doi.acm.org/10.1145/2814710.2814713
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3124312/
http://dl.acm.org/citation.cfm?id=2032397.2032399
https://accumulo.apache.org/
http://doi.acm.org/10.1145/125223.125262
http://doi.acm.org/10.1145/2723372.2723709
http://dx.doi.org/10.1016/0305-0548(86)90048-1
http://dx.doi.org/10.1016/0305-0548(86)90048-1


[20] A. Gupta, V. Gadepally, and M. Stonebraker, “Cross-engine query
execution in federated database systems,” in High Performance Extreme
Computing Conference (HPEC), 2016 IEEE, Submitted.

[21] J. K. Mullin, “Optimal semijoins for distributed database systems,”
Software Engineering, IEEE Transactions on, vol. 16, no. 5, pp. 558–
560, 1990.

[22] C. J. Hursch and J. L. Hursch, SQL: The Structured Query Language.
Blue Ridge Summit, PA, USA: TAB Books, 1988.

[23] P. G. Brown, “Overview of scidb: large scale array storage, processing
and analysis,” in Proceedings of the 2010 ACM SIGMOD International
Conference on Management of data. ACM, 2010, pp. 963–968.

[24] R. E. Burkard and E. Cela, Linear assignment problems and extensions.
Springer, 1999.

[25] A. Lamb, M. Fuller, R. Varadarajan, N. Tran, B. Vandiver, L. Doshi,
and C. Bear, “The vertica analytic database: C-store 7 years later,”
Proceedings of the VLDB Endowment, vol. 5, no. 12, pp. 1790–1801,
2012.


	Introduction
	BigDawg System Modules

	Shuffle Join Framework
	Execution Pipeline
	Skew Examination Strategies
	Full Table Scan
	Table Sampling

	Join-Unit Assignment Strategies
	Full Table Assignment
	Join-Attribute Assignment


	Performance Results
	Experimental Setup
	Skew Examination Strategy Evaluation
	Join-Unit Assignment Strategy Evaluation

	Conclusion and Future Work
	References

