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I. INTRODUCTION

The ever-growing computational requirements of Al and its
associated development and deployment costs are a widely
understood trend [1]-[3]. This increasing computational de-
mand naturally translates into increased energy usage and,
in most cases, increased carbon emissions from datacenters
where these models are developed and deployed. For example,
particular Natural Language Processing (NLP) models can
consume as much C'O, emission as the lifetime emission of
5 cars [4]. In particular, the widespread adoption, prolifer-
ation, and development of large neural networks has made
it increasingly important for Al practitioners to account for
the environmental and climate impacts of Al development.
Creating power and energy efficient methods to train neural
networks could reduce the carbon footprint of these models
and thus lessen the environmental impact of AI. While there
are numerous examples of research into efficient machine
learning models [5], [6], the focus of our paper is on easy-
to-implement interventions that can be readily applied by
ML practitioners without significant modifications to their
code. Further, some of these interventions seem to provide
energy efficiency gains almost “for free” in that they do
not affect the accuracy or precision of the trained model
and may incur minimal changes in computational perfor-
mance. To illustrate the potential impact of these interventions,
we highlight selected results via a popular neural network
architecture on a common computer vision benchmark, to
quantify improvements in energy efficiency and corresponding
changes to model accuracy with relatively simple, straight-
forward tweaks. In particular, we explore simple modification
to the training algorithm, such as altering the learning rate
schedule, along with simple hardware-level interventions such
as capping the power draw of GPUs or reducing the level of
precision in numerical representations.

Our paper also describes a new effort on open-sourcing
datasets that can be used by ML researchers interested in
better understanding the relationship between machine learn-
ing applications, energy usage and carbon emissions. We hope
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this proposed Green Al Challenge will spur research in this
fledgling but important field of study.

II. WHAT ARE INTERVENTIONS?

Approaches to reducing energy requirements and associated
carbon usage of the training and inference of machine learning
models can occur in many ways. For example, one could move
the training of a large-scale workload from an inefficient data-
center to an efficient datacenter. One could better optimize how
software leverages existing hardware or even develop more
efficient algorithms. From our perspective, we see the variety
of approaches being roughly broken in to three categories:

o Data Center Level Interventions: This class of interven-
tions focus on techniques to make how one uses a data
centers more efficient. For example, these interventions
may move workloads towards times where data centers
are more efficient [7] or migrate workloads to lower PUE
data centers [8].

o Hardware Level Interventions: This class of interventions
focus on making efficient hardware choices. For example,
these interventions may focus on tuning and optimizing
general purpose computing or suggest specialized com-
puting platforms for particular computing kernels.

o Software and Algorithmic Interventions: This class of
interventions focus on improving the efficiency of soft-
ware systems and algorithm development. For example,
debloating sofware systems that make them inherently
more efficient or techniques that make tasks such as
neural architecture search more efficient [9].

We admit that the above categories may be viewed as a
simplification of the numerous avenues of related research
but hope that they provide a birds-eye view of different
approaches.

III. DO THESE INTERVENTIONS ACTUALLY WORK?

The high-level interventions described in the previous sec-
tion can have a huge impact to energy consumption. For
example, shifting workloads to more efficient times of day
(e.g., day to night) can yield 10-20% energy reductions which
are more pronounced during heat waves [7]. Similarly, if you
are performing neural architecture search, it is possible to
terminate hyper parameter combinations that are unlikley to
yield meaningful results which can reduce energy usage by
nearly 80% [10]. Similarly, hardware level interventions such
as power capping can yield impressive savings with minimal
impact to the application. Below, we highlight a few results
based on hardware and algorithm interventions.
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Fig. 1: A few simple interventions in action. These simple tweaks such as modifying the learning rate schedule, power
capping, and reducing training precision can lead to nearly 70-80% reduction (cumulatively) in energy consumed for an
image classification task

The reference implementation used for these results is the
ResNet50 [11] model trained on the ImageNet [12] dataset
to a top-1 accuracy of 70% on our institution’s computing
cluster. Each node on this cluster consists of two Nvidia
V100 GPUs and our implementation is based on the MLPerf
[13] Image Classfication benchmark. Several experiments were
constructed that involved adjusting the batch-size chosen for
training (default is 256) as well as various parameters such
as the learning rate (default 0.1), momentum (default 0.9)
and weight decay (default le-4). Selected results for three
interventions — modifying the learning rate, implementing
hardware power limits, and reducing computational precision
—are shown in Figure 1.

In Figure la, we explored the effects of changing the
learning rate decay scheduler. A simple linear decay rate
was chosen initially (learning rate would decay after 10
epochs) and results are likely to translate to other learning
rate schedulers. As seen in the figure, simply changing the
decay occuring every 10 Epochs instead of every 8 epochs
reduces the overall energy for the entire job by nearly 10%.

In Figure 1b, we explore a simple but powerful change to
our GPUs power draw. Rather than the default 250W power
cap, we limit our NVidia V100 GPU to draw up to 150W.
This simple change reduces the overall energy consumption
by over 15% with a negligible difference in run-time.

Finally, in Figure lc, we explore changing the computa-
tional precision being used for training the image classification
model. This simple change of training using signle precision
(float32) instead of the default double precision (float64)
results in an impressive reduction of energy needed for training
by nearly 75% with no significant reduction in accuracy.
Further experiments show promise of completing training
faster and more efficiently beyond the 70% benchmark with
no signifacnt reduction in accuracy.

IV. SHOW ME YOUR DATA — THE GREEN Al CHALLENGE

31t is our belief that driving research into fundamental
problems such as datacenter usage and optimization can be
largely limited by the availability and accessibility of relevant
data. For example, datacenter oriented data sets such as [14],

[15] have led to new innovations and insight into the operation
of modern datacenters [16], [17]. Similarly, in order to drive
research into understanding and potentially mitigating the
environmental impact of Al, our team is developing a Green
Al Challenge. The chief goals of the Challenge are:

1) Development of power-efficient approaches to both Al
training and inference with the goal of improving
petaflops/watt performance.

2) Data-efficient computing to reduce training resources.

3) Informed machine learning to simplify data or model
design by using or encoding prior knowledge.

4) Energy-efficient neural network design.

5) Adaptive, scalable, energy-efficient data center manage-
ment.

To provide a budding research community with real prob-
lems, we will open-source detailed records from our institu-
tion’s datacenter and call on others to do the same. Such a
collaborative and sustained effort will not only spur research
into this critical area, but also train a generation of machine
learning developers where energy efficiency is a first-order
priority.

V. CONCLUSIONS

In this article, we describe early approaches to reducing
computational demands, energy impact, and associated carbon
emissions for machine learning — a growing source of data
center computing usage. We motivate these approaches with a
few selected results and describe our intention to release data
to help drive further research into this field.
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