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Growth of AI Computing Requirements

Deep learning compute requirements are growing faster than hardware 
performance
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[1] Thompson, Neil C., Kristjan Greenewald, Keeheon Lee, and Gabriel F. Manso. 
2021. Deep Learning’s Diminishing Returns: The Cost of Improvement is Becoming 
Unsustainable. IEEE Spectrum.
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AI Computing Carbon Emissions
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[1] Thompson, Neil C., Kristjan Greenewald, Keeheon Lee, and Gabriel F. Manso. 
2021. Deep Learning’s Diminishing Returns: The Cost of Improvement is Becoming 
Unsustainable. IEEE Spectrum.
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Deep learning energy requirements are growing unsustainably
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[2] The Energy and Carbon Footprint of Training End-to-End Speech 
Recognizers - Parcollet, T., & Ravanelli, M., 2021 
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Other Facets

• Current datacenter energy consumption ~ 1-2% global energy demand
– Estimated to increase to 8-21% by 2030
– Clock frequencies scaling

• Significant water usage
– 20% of water from stressed watersheds
– 50% of servers supplied by power plants in water stressed areas

• Environmental footprint goes beyond “operational” energy usage
– E.g., carbon costs of hardware manufacturing

Zhao, et. al. “A Greener World for 
A.I.”, IPDPS ADOPT 2022 
(Accepted)

Frey, et. al. “Benchmarking Resource Usage for 
Efficient Distributed Deep Learning”, 
SuperComputing 2022 (Submitted)

Opportunity to reduce ~1-2% of global electricity demand
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Current incentives for A.I. research, applications:
• Prioritizing best-performing models (accuracy)
• Faster run-times, more experimentation, faster results
• Publications in high-visibility journals and conferences

What gets missed:
• Prioritizing energy-efficient models
• More experiments run, more computation, more energy consumed
• Awareness of environmental footprint of AI research, applications

Sustainability Challenges in AI

How can we make A.I. research and practice more sustainable?
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Our Testbed

*Based on 2020 Top500.org                    
AI Flops = 4x4 matrix multiply half precision in, single precision out (mixed precision training)

• Significant increase in computing power for 
simulation, data analysis, and machine learning

• Leverages power of 900 Nvidia Volta GPUs

• Operates on renewable energy

Capability
Processor Intel Xeon & Nvidia Volta

Total Cores 737,000

Peak 7.4 Petaflops

Top500 5.2 Petaflops

Memory 172 Terabytes

Peak AI Flops 100+ Petaflops

Network Link Intel OmniPath 25 GB/s

Low Carbon 
Emission
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Scope 2: Data Center Operations

Sources of Carbon Emissions in HPC

Scope 3: Embodied (Manufacturing)
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• Introduction
• Reducing Operational Footprint
• Modelling Embodied Footprint
• Next Steps

Outline
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Reducing Operational Carbon Emissions

Challenge:

• Decrease the footprint of operational AI applications without making 
large structural changes to infrastructure or code?

Solution approaches:

• More efficient code, training practices

• Tuning hardware on individual nodes

• Improving datacenter operations
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Reducing Development Environment Computing Demands

Model Development Hardware Usage Strategies Datacenter Operations
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• Model design, testing, 
and development

• AI training & inference

• AI-enabled Model 
Discovery[1]

• Knowledge Informed 
Models

• Hardware variety
• Matching workload to 

hardware capabilities

• Hardware-based 
interventions

• ML-based hardware 
selection[2]

• Hardware power 
modulation

• Power limiting[3]

• Clock frequency 
scaling[3]

• Auto-tuning complex 
applications[4]

[1]Neural Scaling of Deep Chemical 
Models – Frey, et. al, Nature 
Machine Intelligence (submitted) 

[2] DASH: Scheduling Deep Learning Workloads 
on Multi-Generational GPU-Accelerated Clusters 
– Li, et. al., IEEE HPEC 2022

[3] Great Power, Great Responsibility: 
Recommendations for Reducing Energy for Training 
Language Models – McDonald, et. al., NAACL 2022

[4] Bliss: auto-tuning complex applications 
using a pool of diverse lightweight learning 
models – Roy, et. al., PLDI 2021
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• Hyper-parameter and training 
settings can have significant impact 
tot both training time and energy 
consumed

• Early results when training a ResNet
on ImageNet based on MLPerf
Challenge

• Example settings
– Batch Size (~20% savings possible)
– Precision (going from mixed->single; 

25% savings)
– Step Size Linear Decay 

Example: Energy Optimizing Hyper Parameters
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Example: Hardware Tuning

• Compared energy usage of different 
power-caps for training, inference with 
ImageNet

• Power-cap choices: 250W (default) 
versus 200W, 150W,  125W, 100W

• Caps typically reduced energy usage 
with no statistically significant change 
in runtime

• Lower Power Cap seems optimal 
reducing energy use with an 
insignificant change in job runtime Simple hardware interventions provide ~10-15% 

energy savings with minimal impact to performance
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Example: Energy-aware scheduling

• Datacenter PUE varies continuously, 
depending on compute workloads and 
cooling power

• Daily variation in PUE computed as 
percent difference between max hourly 
average PUE and min:

• Average daily variation is 7.3% over all 
2020

𝐦𝐚𝐱 𝑷𝑼𝑬 −𝐦𝐢𝐧 𝑷𝑼𝑬
𝐦𝐢𝐧 𝑷𝑼𝑬

Time-shifting compute-intensive jobs could 
save up to 20% energy
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• Introduction
• Reducing Operational Footprint
• Estimating Embodied Footprint
• Next Steps

Outline
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Carbon footprint has become an important topic in 
systems research

Section Credit: Baolin Li
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Carbon footprint modeling: the ACT approach

• ACT (Gupta et. Al., ISCA’22) is a carbon footprint modeling tool. It organizes the 
carbon emission of a system into two categories
– Embodied carbon
– Operational carbon

Gupta, Udit, Mariam Elgamal, Gage Hills, Gu-Yeon Wei, Hsien-Hsin S. Lee, David Brooks, and Carole-Jean Wu. "ACT: Designing sustainable computer systems with 
an architectural carbon modeling tool." In Proceedings of the 49th Annual International Symposium on Computer Architecture, pp. 784-799. 2022.
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Goal of this presentation

Share our experience and the challenges we 
encountered while using the ACT tool to 
model the carbon footprint of a large-scale 
GPU-accelerated HPC system
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Embodied Footprint Modeling Challenge 1

• Difficult to obtain information related to carbon footprint modeling from vendors’ 
product datasheet, for example
– Number of ICs packaged on a NVIDIA GPU card
– Die area of Intel Xeon processors
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• ACT’s model works well for a single device, e.g., desktop, phone

• But lacks extensibility to large scale distributed systems
– For example, the network fabrics for inter-node communication

Networking
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• Need for GPU-specific features to model GPU-accelerated systems
– ACT models GPUs like CPUs – based on the processor’s die area
– Modern GPUs use FinFET technology compared to traditional CMOS
– GPUs such as NVIDIA V100 use HBM2 memory that is stacked vertically and 

integrated into the same package with the GPU cores
• Unlike CPUs that use DDR4/DDR5 discrete memory chips

https://en.wikipedia.org/wiki/High_Bandwidth_Memory
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Operational carbon footprint challenge 1

• Need for systematic power monitoring tool
– We need to monitor CPU/GPU power at node level
– Use this to estimate operational energy
– Then convert to emitted carbon using real-time carbon intensity
– Good to have a universal software suite that can be used in any datacenter in 

any location
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Operational carbon footprint challenge 2

• Difficult to estimate operational carbon emission on the next-generational system
– When making system upgrade decisions, need to build carbon footprint model 

for the next generational system
– But the HW/SW profiling for operational carbon is difficult to obtain from new 

hardware in the future
– System operators also usually do not have information about the user workload
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• Hardware manufacturers
– Provide more data to customers from the carbon perspective

• Embodied carbon modeling
– Extension to audiences from HPC and distributed system field is needed

• Operational carbon modeling
– Need for universal and systematic monitoring tool
– Would be helpful for system operators to record history of previous hardware 

upgrades for reference

Section Credit:
Baolin’s email: li.baol@northeastern.edu
Baolin’s website: https://baolin-li.netlify.app/

mailto:li.baol@northeastern.edu
https://baolin-li.netlify.app/
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• Introduction
• Reducing Operational Footprint
• Estimating Embodied Footprint
• Next Steps

Outline
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• Difficult to estimate embodied footprint due to 
lack of data from manufacturers providers

• Opportunity to help vendors by making a 
standardized datasheet that can be filled out

• Calling on OCP community to help develop 
these guidelines
– Important to make them easy to collect for 

vendors
– Opportunities for third-party auditing in certain 

cases

Better Understanding Embodied Footprint:
Provide Standardized Data!

Processor Data Sheet
Vendor: XYZ

System On Chip
SoC Area

Energy / Area

Carbon Intensity

…

Packaging
Chemical Footprint

Environmental Report

…

Memory Modules
DRAM 

HDD

…

Goal: Create standardized (and easy-to-
implement) datasheets to better understand 

manufacturer carbon emissions
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• No benchmark for training/testing machine learning models focusing on energy usage

• Common AI benchmarks
– MLPerf gives suite of training benchmarks for hardware optimizations and time-to-completion 

for variety of research areas (Image Classification/NLP/Reinforcement)

• Green AI Benchmarks: tasks similar to existing benchmarks with energy baselines:
– Problem definition and metrics
– Model categories/constraints, training/validation datasets
– Reasonable target accuracy
– Baseline implementations with associated energy stats

Make Energy Efficiency a First Order Priority

Energize Research into Reducing Operational footprint through smarter computing 
technique and algorithms
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• Growing energy impact of AI and machine learning 

• Many low to no overhead changes that can be made to give big energy savings
– Some can be done without user intervention
– Minimal code changes needed
– Starting point for much more user-in-the-loop feedback

• A best practice can save and reduce energy use before training larger and more 
complicated systems

Conclusions


