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E[ Growth of Al Computing Requirements

Deep Learning era
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Deep learning compute requirements are growing faster than hardware
performance
2 [1]1 Thompson, Neil C., Kristjan Greenewald, Keeheon Lee, and Gabriel F. Manso. LINCOLN LABORATORY

2021. Deep Learning’s Diminishing Returns: The Cost of Improvement is Becoming
Unsustainable. IEEE Spectrum.
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Al Computing Carbon Emissions
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Deep learning energy requirements are growing unsustainably

[1]1 Thompson, Neil C., Kristjan Greenewald, Keeheon Lee, and Gabriel F. Manso. . L.
2021. Deep Learning’s Diminishing Returns: The Cost of Improvement is Becoming [2] The Energy and Carbon Footprint of Training End-to-End Speech LINCOLN LABORATORY
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Other Facets

« Current datacenter energy consumption ~ 1-2% global energy demand
— Estimated to increase to 8-21% by 2030
— Clock frequencies scaling

 Significant water usage
— 20% of water from stressed watersheds
— 50% of servers supplied by power plants in water stressed areas

« Environmental footprint goes beyond “operational” energy usage
— E.g., carbon costs of hardware manufacturing

Opportunity to reduce ~1-2% of global electricity demand

(Accepted)

Zhao, et. al. “A Greener World for Frey, et. al. “Benchmarking Resource Usage for
A.l”, IPDPS ADOPT 2022 Efficient Distributed Deep Learning”,

SuperComputing 2022 (Submitted)
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E[ Sustainability Challenges in Al

Current incentives for A.l. research, applications:
 Prioritizing best-performing models (accuracy)
« Faster run-times, more experimentation, faster results

* Publications in high-visibility journals and conferences

What gets missed:
 Prioritizing energy-efficient models
* More experiments run, more computation, more energy consumed

« Awareness of environmental footprint of Al research, applications

How can we make A.l. research and practice more sustainable?

5 LINCOLN LABORATORY
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]S_E[ Our Testbed

-
Ifnnaﬁnq

ffffff

/ : il ' B i R w Carbon
s Lo s e RN —UERR) TTREE e Emission
- Significant increase in computing power for _
simulation, data analysis, and machine learning Processor Intel Xeon & Nvidia Volta
« Leverages power of 900 Nvidia Volta GPUs Total Cores 737,000
Peak 7.4 Petaflops
Top500 5.2 Petaflops
Memory 172 Terabytes
Peak Al Flops 100+ Petaflops
 Operates on renewable energy Network Link Intel OmniPath 25 GB/s

*Based on 2020 Top500.0rg
6 Al Flops = 4x4 matrix multiply half precision in, single precision out (mixed precision training) LINCOLN LABORATORY
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]SE[ Sources of Carbon Emissions in HPC

Scope 2: Data Center Operations Scope 3: Embodied (Manufacturing)
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E[ Reducing Operational Carbon Emissions

Challenge:

« Decrease the footprint of operational Al applications without making
large structural changes to infrastructure or code?

Solution approaches:

* More efficient code, training practices

* Tuning hardware on individual nodes

* Improving datacenter operations "”""'J,Jﬂ
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]S_E[ Reducing Development Environment Computing Demands

Proposed

Challenge

Approach

Model design, testing,
and development

Al training & inference

Al-enabled Model
Discovery!!l

Knowledge Informed
Models

B = §f
Hardware variety

Matching workload to
hardware capabilities

Hardware-based
interventions

ML-based hardware
selectionl(?

Model Development Hardware Usage Strategies Datacenter Operations

B

1

—— ';-
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Hardware power
modulation

Power limiting[®]

Clock frequency
scaling(3!

Auto-tuning complex
applications!“l

10

Models — Frey, et. al, Nature
Machine Intelligence (submitted)

— Li, et. al., IEEE HPEC 2022

[1]Neural Scaling of Deep Chemical  [2] DASH: Scheduling Deep Learning Workloads [3] Great Power, Great Responsibility:
on Multi-Generational GPU-Accelerated Clusters Recommendations for Reducing Energy for Training using a pool of diverse lightweight learning LINCOLN LABORATORY

Language Models — McDonald, et. al., NAACL 2022 models — Roy, et. al., PLDI 2021

[4] Bliss: auto-tuning complex applications
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]S_E[ Example: Energy Optimizing Hyper Parameters

Batch Size and Energy Consumption
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 Hyper-parameter and training
settings can have significant impact
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« Early results when training a ResNet ‘
on ImageNet based on MLPerf 2
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Example: Hardware Tuning

Compared energy usage of different
power-caps for training, inference with
ImageNet

Power-cap choices: 250W (default)
versus 200W, 150W, 125W, 100W

Caps typically reduced energy usage
with no statistically significant change
in runtime

Lower Power Cap seems optimal
reducing energy use with an
insignificant change in job runtime

GPU Capping and Energy Use

Energy Consumed (KW Hours)
Oy (@)} (@)} ~ ~ (00 (00
w = Oy o Oy () Oy

100 125 150 200 250
GPU Cap (Watts)

Simple hardware interventions provide ~10-15%
energy savings with minimal impact to performance

LINCOLN LABORATORY
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Example: Energy-aware scheduling

- Datacenter PUE varies continuously,

depending on compute workloads and
cooling power

« Daily variation in PUE computed as

percent difference between max hourly
average PUE and min:

max(PUE) — min(PUE)
min(PUE)

« Average daily variation is 7.3% over all

2020

Time-shifting compute-intensive jobs could
save up to 20% energy

Daily Average PUE in 2020
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Carbon footprint has become an important topic in
systems research

ACT: Designing Sustainable Computer Systems With An Carbon Bl A Holisits E K
. . aroon cxpilorer: olistic Framewor
Architectural Carbon Modeling Tool bt
, , , _ for Designing Carbon Aware Datacenters
Udit Gupta Mariam Elgamal Gage Hills Gu-Yeon Wei
ugupta@g.harvard.edu mariamelgamal@g.harvard.edu ghills@g.harvard.edu guyeon@seas.harvard.edu Bilge Acun Benjamin Lee Fiodar Kazhamiaka
Harvard University/Meta Harvard University Harvard University Harvard University acun@meta.com leebcc@seas.upenn.edu fiodar@stanford.edu
USA USA USA USA Meta University of Pennsylvania, Meta Stanford University
Hsien-Hsin S. Lee David Brooks Carole-Jean Wu A HSa L
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Understanding the Future of Energy Efficiency in Multi-Module GPUs

SUSTAINABLE Al: ENVIRONMENTAL IMPLICATIONS’ Akhil Arunkumar®, Evgeny Bolotin', David Ngllunsf. and Carole-Jean Wu*
CHALLENGES AND OPPORTUNITIES *Arizona State University, T NVIDIA

Email: {akhil.arunkumar, carole-jean.wu}@asu.edu, {ebolotin, dnellans}@nvidia.com

Carole-Jean Wu' Ramya Raghavendra' Udit Gupta'? Bilge Acun' Newsha Ardalani' Kiwan Maeng '
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energy efficiency. In this work, we propose a new metric for
ABSTRACT GPU efficiency called EDP Scaling Efficiency that quantifies =
2 the effects of both strong performance scaling and overall Stacked || GPU

This paper explores the environmental impact of the super-linear growth trends for AI from a holistic perspective,
spanning Data, Algorithms, and System Hardware. We characterize the carbon footprint of AI computing by
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energy efficiency in these designs. To enable this analysis, we DRAM
develop a novel top-down GPU energy estimation framework
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that is accurate within 10% of a recent GPU desion. Being
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E[ Carbon footprint modeling: the ACT approach

« ACT (Gupta et. Al., ISCA’22) is a carbon footprint modeling tool. It organizes the
carbon emission of a system into two categories

— Embodied carbon

— Operational carbon

I ; ACT Architectural Carbon Footprint Model ; I
| Operational emissions | Manufacturing emissions |
A A + * * A
| ; SoC (e.g., application processors) ; | [DRAM][NAND][HDD] | Packaging |
Utilization Energy generation  Application SoC Energy per Gases per Yield Raw DDR, NAND Flash, HDD Integrated
effectiveness (Carbon intensity) run-time area Area Area materials circurt
(PUE, battery 4 A ? T ? f 1 packaging
efficiency) . I
HW | Carbon Process tech. TSMC environmental SK Hynix’s & SPIL
T design | intensity T reports Seagate’s memory environmental
- I - . — characterization report
Industry data center reports HW/SW Power grid reports & iMec manufacturing characterization
profiling TSMC environmental reports (IEDM 2020 paper)

Gupta, Udit, Mariam Elgamal, Gage Hills, Gu-Yeon Wei, Hsien-Hsin S. Lee, David Brooks, and Carole-Jean Wu. "ACT: Designing sustainBEDi€ €3kiNuleA 818 HIRY
an architectural carbon modeling tool." In Proceedings of the 49th Annual International Symposium on Computer Architecture, pp. 784-7Y4SSEHFITS INSTITUTE OF TECHNOLOGY



E[ Goal of this presentation

Share our experience and the challenges we
encountered while using the ACT tool to
model the carbon footprint of a large-scale
GPU-accelerated HPC system

LINCOLN LABORATORY
MASSACHUSETTS INSTITUTE OF TECHNOLOGY



E[ Embodied Footprint Modeling Challenge 1

« Difficult to obtain information related to carbon footprint modeling from vendors’
product datasheet, for example

— Number of ICs packaged on a NVIDIA GPU card

— Die area of Intel Xeon processors
|

1
Manufacturing emissions

|
4 4 4 4 4
| SoC (e.g., application processo?rs) | [DRAM][NAND][HDD] | Packaging |
SoC Energy per Gases per Yield Raw DDR, NAND Flash, HDD Integrated
area Area Area materials circuit
T f ? T T T packaging
HW | Carbon Process tech. TSMC environmental SK Hynix’s & SPIL
design | intensity T reports Seagate’s memory environmental
- l — : _ — characterization report
Power grid reports & iMec manufacturing characterization
TSMC environmental reports (IEDM 2020 paper)

LINCOLN LABORATORY
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]SE[ Embodied footprint modeling challenge 2

« ACT’s model works well for a single device, e.g., desktop, phone

« But lacks extensibility to large scale distributed systems

— For example, the network fabrics for inter-node communication

1
| Manufacturing emissions e

4 ) } 4
icati Packagin .
| ; 1SoC (e.g., appllc?tlon processofrs) ; | [DRAM][NAND][HDD] | *g g | Network| ng
SoC Energy per Gases per Yield Raw DDR, NAND Flash, HDD Integrated
area Area Area materials circuit
T T f 1 I T I packlagnng
HW | Carbon Process tech. TSMC environmental SK Hynix’s & SPIL
design | intensity T reports Seagate’s memory environmental
- ' - . — characterization report
Power grid reports & iMec manufacturing characterization
TSMC environmental reports (IEDM 2020 paper)

19 LINCOLN LABORATORY
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E[ Embodied footprint modeling challenge 3

* Need for GPU-specific features to model GPU-accelerated systems
— ACT models GPUs like CPUs — based on the processor’s die area
— Modern GPUs use FinFET technology compared to traditional CMOS

— GPUs such as NVIDIA V100 use HBM2 memory that is stacked vertically and
integrated into the same package with the GPU cores

- Unlike CPUs that use DDR4/DDR5 discrete memory chips

Through-Silicon Vias (TSVs),
s TR e Fevcotoler  DRAM Y iauyvye T
G PU metalization layer d|Ce : : : : : : : : 500 pm
HBM |controllér die |

Silicon interposer |

1024 data links / HBM stack @ 500MHz

Package substrate

20

G I : LINCOLN LABORATORY
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E[ Operational carbon footprint challenge 1

* Need for systematic power monitoring tool
— We need to monitor CPU/GPU power at node level
— Use this to estimate operational energy
— Then convert to emitted carbon using real-time carbon intensity

— Good to have a universal software suite that can be used in any datacenter in
any location

1
Operational emissions
A A

Utilization Energy generation Application

effectiveness (Carbon intensity) run-time
(PUE, battery 4 4
efficiency)
Industry data center reports HW/SW
profiling
21
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E[ Operational carbon footprint challenge 2

22

 Difficult to estimate operational carbon emission on the next-generational system

— When making system upgrade decisions, need to build carbon footprint model
for the next generational system

— But the HW/SW profiling for operational carbon is difficult to obtain from new
hardware in the future

— System operators also usually do not have information about the user workload

1
Operational emissions
A

Utilization Energy generation Application
effectiveness (Carbon intensity) run-time
(PUE, battery 4 A

efficiency)

Industry data center reports HW/SW
profiling

LINCOLN LABORATORY
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E[ Summary and recommendations

 Hardware manufacturers
— Provide more data to customers from the carbon perspective
« Embodied carbon modeling
— Extension to audiences from HPC and distributed system field is needed

« Operational carbon modeling
— Need for universal and systematic monitoring tool

— Would be helpful for system operators to record history of previous hardware
upgrades for reference

Section Credit:

Baolin’s email: li.baol@northeastern.edu
Baolin’s website: https://baolin-li.netlify.app/
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E[ Better Understanding Embodied Footprint:
< Provide Standardized Data!

 Difficult to estimate embodied footprint due to Processor Data Sheet
lack of data from manufacturers providers Vendor: XYZ

« Opportunity to help vendors by making a System On Chip
standardized datasheet that can be filled out SoC Area

Energy / Area

« Calling on OCP community to help develop
these guidelines

Carbon Intensity

— Important to make them easy to collect for Packaging
vendors Chemical Footprint

— Opportunities for third-party auditing in certain Environmental Report
cases

Memory Modules
DRAM
HDD

Goal: Create standardized (and easy-to-
implement) datasheets to better understand
manufacturer carbon emissions

25 LINCOLN LABORATORY
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E[ Make Energy Efficiency a First Order Priority

 No benchmark for training/testing machine learning models focusing on energy usage

« Common Al benchmarks

— MLPerf gives suite of training benchmarks for hardware optimizations and time-to-completion
for variety of research areas (Image Classification/NLP/Reinforcement)

* Green Al Benchmarks: tasks similar to existing benchmarks with energy baselines:
— Problem definition and metrics
— Model categories/constraints, training/validation datasets
— Reasonable target accuracy
— Baseline implementations with associated energy stats

Energize Research into Reducing Operational footprint through smarter computing
technique and algorithms

26
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E[ Conclusions

« Growing energy impact of Al and machine learning

 Many low to no overhead changes that can be made to give big energy savings
— Some can be done without user intervention
— Minimal code changes needed
— Starting point for much more user-in-the-loop feedback

« A best practice can save and reduce energy use before training larger and more
complicated systems

27 LINCOLN LABORATORY
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