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Growth of AI Computing Requirements

Deep learning compute requirements are growing faster than hardware performance
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[1] Thompson, Neil C., Kristjan Greenewald, Keeheon Lee, and Gabriel F. Manso. 
2021. Deep Learning’s Diminishing Returns: The Cost of Improvement is Becoming 
Unsustainable. IEEE Spectrum.
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AI Computing Carbon Emissions
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[1] Thompson, Neil C., Kristjan Greenewald, Keeheon Lee, and Gabriel F. Manso. 
2021. Deep Learning’s Diminishing Returns: The Cost of Improvement is Becoming 
Unsustainable. IEEE Spectrum.

Deep Learning era

Deep learning energy requirements are growing unsustainably

Deep Learning
Requirements

Single Processor 
Performance

[2] The Energy and Carbon Footprint of Training End-to-End Speech 
Recognizers - Parcollet, T., & Ravanelli, M., 2021 
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…to put it in perspective
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How about ChatGPT?
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Other Facets

• Current datacenter energy consumption ~ 1-2% global energy demand
– Estimated to increase to 8-21% by 2030

• Significant water usage
– 20% of water from stressed watersheds
– 50% of servers supplied by power plants in water stressed areas

• Environmental footprint of AI goes beyond just datacenter usage
– E.g., carbon costs of hardware manufacturing (embodied carbon)

Zhao, et. al. “A Greener World for 
A.I.”, IPDPS ADOPT 2022

Frey, et. al. “Benchmarking Resource Usage for 
Efficient Distributed Deep Learning”, 
SuperComputing 2022 (Submitted)

Opportunity to reduce ~1-2% of global electricity demand
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Greenhouse Gas Scopes and Emissions

Image Source: https://www.epa.gov/climateleadership/scope-1-and-scope-2-inventory-guidance

For a datacenter:

• Scope 1 Examples: 
Backup generators

• Scope 2 Examples: 
Emissions from energy 
used for cooling, 
computing, building 
management,…

• Scope 3 Examples: 
Hardware manufacturing 
emissions 
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Current incentives for A.I. research, applications:
• Prioritizing best-performing models (accuracy)
• Faster run-times, more experimentation, faster results
• Publications in high-visibility journals and conferences

What gets missed:
• Prioritizing energy-efficient models
• More experiments run, more computation, more energy consumed
• Awareness of environmental footprint of AI research, applications

Sustainability Challenges in AI

Research Theme: How can we make AI research and practice more sustainable?
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Understanding a Datacenter’s Carbon Footprint
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How can you calculate a datacenter’s carbon footprint?

Total Carbon Footprint

Embodied Footprint
(GHG Protocol Scope 3*)

Chip 
Manufacturing

Storage & 
Memory 

Manufacturing

Other 
Components 
(Packaging, 
Networking, 

…)

Operational Footprint 
(GHG Protocol Scope 2*)

Datacenter 
Level 

Efficiency

Carbon 
Intensity of 

Grid
Application 

Usage

*From the perspective of a datacenter operator
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• Due to operating a datacenter
• Includes, energy to IT gear as well as facilities operations (e.g., cooling)
• Power Usage Effectiveness (PUE), datacenter efficiency metric

𝑷𝑼𝑬 =
𝑭𝑬 + 𝑰𝑻
𝑰𝑻

IT – Information technology energy
FE – Facility energy

• Global average is 1.58 (2018), efficient datacenters are close to 1

Operational Footprint

Common strategy: leverage renewable energy sources for your datacenter 
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Moving to renewables can be a Zero-sum game
(at any given time)

Renewables are a worthy investment; Also need ways to be more energy efficient

Image source: https://www.epa.gov/green-power-markets/us-electricity-grid-markets
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Embodied Footprint

• With renewable, operational carbon footprint may 
dramatically reduce
– Increasing proportion of carbon coming from 

manufacturing
• Embodied carbon includes manufacturing

– Energy
– Chemicals involved (e.g., for etching)

• Some estimates: 80+% of datacenter footprint due 
to embodied carbon

(when leveraging renewables to reduce operational footprint)

Processor Data Sheet
Vendor: XYZ

System On Chip
SoC Area

Energy / Area

Carbon Intensity

…

Packaging
Chemical Footprint

Environmental Report

…

Memory Modules
DRAM 

HDD

…

Proposed Data Sheet

• Difficult to estimate Embodied Carbon Footprint 
=> Opportunities to improve!
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Reducing the Operational Footprint of a Real Datacenter
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Our Testbed: MIT SuperCloud

*Based on 2020 Top500.org                    
AI Flops = 4x4 matrix multiply half precision in, single precision out (mixed precision training)

• Significant increase in computing power for 
simulation, data analysis, and machine learning

• Leverages power of 900 Nvidia Volta GPUs

• Operates on renewable energy

Capability
Processor Intel Xeon & Nvidia Volta

Total Cores 737,000

Peak 7.4 Petaflops

Top500 5.2 Petaflops

Memory 172 Terabytes

Peak AI Flops 100+ Petaflops

Network Link Intel OmniPath 25 GB/s

Low Carbon 
Emission
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Research Goals

Challenge:

• Improve energy efficiency of AI applications without making large 
structural changes to infrastructure or code?

Approaches – and example results:

• Better application usage - More efficient AI development

• Improve datacenter efficiency - Reduce hardware energy usage

• Reduce carbon intensity - Shifting computations for efficiency
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Efficient AI Model Development
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Figure 1: Benchmarking experiments training DNNs on more than 400 GPUs with controlled power consump-

tion reveal optimal settings for efficient distributed DL. Over 3,400 distributed training experiments show that
transformer-based models and graph neural networks with directional message passing exhibit superior utilization of
increased computational resources, while restricting GPU power consumption to 200 W reduces total energy con-
sumption without slowing down training. All models see diminishing returns from distributed training at high GPU
counts due to communication bottlenecks.

The complexity of DNNs and the variety of numer-
ical libraries and hardware accelerators [34] available
make predicting the execution time of training a model
challenging. Previous efforts estimated training times
with linear models depending on the number of floating
point operations per epoch [30], while others have lever-
aged DNNs themselves to learn the non-linear relation-
ship [19] between network architecture, the data man-
ifold, computational infrastructure, and execution time.
More recent work to predict the execution time of fine-
tuning DNNs uses a linearized approximation of the dy-
namics of a DNN during fine-tuning [47], following the
Neural Tangent Kernel (NTK) approach [17]. These
methods may yield impressive accuracy in training time
estimation, at least in terms of number of training steps
required, but they are cumbersome and impractical for
daily usage in an HPC center. More relevantly, these ap-
proaches do not account for energy consumption, which
is difficult to estimate for general network configurations
[14, 45], or variation in GPU utilization. Scientists with
limited HPC experience and rapidly changing DL work-
flows need guidance from large-scale, distributed DL
training experiments to optimize resource allocation for
efficient, scalable deep learning.

In this paper, we train six different, representative DL
models (Table 1) with applications across computer vi-
sion (CV), natural language processing (NLP), and geo-
metric deep learning (GDL) and investigate their scaling
behavior across hundreds of GPUs. We monitor GPU
utilization and energy consumption during distributed
training and identify optimal settings for efficient train-

thorized by the U.S. Government may violate any copyrights that exist
in this work.

ing and opportunities for improved scaling and hardware
utilization. Our main goal is not to generate precise pre-
dictions of execution time, but instead to study the im-
pacts of and the relationship between model architec-
ture and compute utilization on distributed training time.
By comparing model architectures via their scaling ex-
ponents, we can estimate training times for variations
on common architectures such as convolutional neural
networks (CNNs), transformer-based language models,
and graph neural networks (GNNs). This will help sci-
entific DL practitioners in developing methods to better
profile different model architectures and determine the
most time and energy-efficient workflow for their own
hardware configurations.

To the best of our knowledge, current literature on
scaling experiments for DL has not focused on the effects
of energy-consumption strategies such as power limiting
the hardware or changing clock frequencies of the GPU
to limit performance. We hope that these findings will
also help enable predictions of model-scaling behavior
on performance-limited hardware to potentially antici-
pate the energy needs for different classes of DNNs in
future work.

2 Methods and Experimental Setup

Environment All experiments described in this paper
were conducted on an operational, petascale supercom-
puting system. The cluster consists of 448 compute
nodes with dual Intel Xeon Gold 6248 CPUs with 384
GB of RAM and two NVIDIA Volta V100 GPUs with
32 GB of memory per node. A graphical summary of the
experiments and insights presented in this paper is shown

2

Batch size 32 Batch size 128

QoS

Cost-eff.

QoS and cost-effectiveness are at odds!

Incoming query stream may have queries of different batch sizes
6

Performance 
Targets

Model 
Selection

Architecture searches and parameter optimization have significant compute requirements

[1] Energy-aware neural architecture selection and hyperparameter optimization – Frey, et. al,, IEEE IPDPS ADOPT 2022
[2] Neural Scaling of Deep Chemical Models – Frey et. al, Nature Machine Intelligence (under review)
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• Hyper-parameter and training 
settings have significant impact to 
training time and energy consumed

• For example, ResNet on ImageNet 
based on MLPerf Challenge

• Example tuning settings
– Batch Size (~20% savings possible)
– Precision (going from mixed->single; 

25% savings)
– Step Size Linear Decay 

Why do hyper-parameter searches?
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Modeling performance: training speed estimation (TSE)

(Ru, Robin, et al. "Speedy Performance Estimation for Neural Architecture 
Search." Advances in Neural Information Processing Systems 34 (2021).)

How do we speed up time to performance for new models and datasets?

• TSE is a simple, efficient, computationally cheap method for neural architecture search

Area under 
training loss 

curve

Training steps

Lo
ss

Training speed 
estimation
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Neural Network
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Number of 
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Epochs



GreenAI - 20

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G  C E N T E R

Intervention for Efficient Neural Architecture Search 
and Hyperparameter Optimization
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tion reveal optimal settings for efficient distributed DL. Over 3,400 distributed training experiments show that
transformer-based models and graph neural networks with directional message passing exhibit superior utilization of
increased computational resources, while restricting GPU power consumption to 200 W reduces total energy con-
sumption without slowing down training. All models see diminishing returns from distributed training at high GPU
counts due to communication bottlenecks.
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ship [19] between network architecture, the data man-
ifold, computational infrastructure, and execution time.
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methods may yield impressive accuracy in training time
estimation, at least in terms of number of training steps
required, but they are cumbersome and impractical for
daily usage in an HPC center. More relevantly, these ap-
proaches do not account for energy consumption, which
is difficult to estimate for general network configurations
[14, 45], or variation in GPU utilization. Scientists with
limited HPC experience and rapidly changing DL work-
flows need guidance from large-scale, distributed DL
training experiments to optimize resource allocation for
efficient, scalable deep learning.

In this paper, we train six different, representative DL
models (Table 1) with applications across computer vi-
sion (CV), natural language processing (NLP), and geo-
metric deep learning (GDL) and investigate their scaling
behavior across hundreds of GPUs. We monitor GPU
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ponents, we can estimate training times for variations
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To the best of our knowledge, current literature on
scaling experiments for DL has not focused on the effects
of energy-consumption strategies such as power limiting
the hardware or changing clock frequencies of the GPU
to limit performance. We hope that these findings will
also help enable predictions of model-scaling behavior
on performance-limited hardware to potentially antici-
pate the energy needs for different classes of DNNs in
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2 Methods and Experimental Setup

Environment All experiments described in this paper
were conducted on an operational, petascale supercom-
puting system. The cluster consists of 448 compute
nodes with dual Intel Xeon Gold 6248 CPUs with 384
GB of RAM and two NVIDIA Volta V100 GPUs with
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QoS and cost-effectiveness are at odds!

Incoming query stream may have queries of different batch sizes
6

Performance 
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Training performance estimation (TPE) combines training speed estimation and energy 
consumption tracking to minimize energy expenditure

Training
Performance
Estimation

[1] Energy-aware neural architecture selection and hyperparameter optimization – Frey, et. al,, IEEE IPDPS ADOPT 2022
[2] Neural Scaling of Deep Chemical Models – Frey et. al, Nature Machine Intelligence (under review)
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Energy-Efficient Neural Architecture Optimization for 
Graph Neural Networks

80% total energy savings with early identification of optimal training configurations

True Loss
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ss

Predicted Model Performance for SchNet[2]

[2] Schnet: A continuous-filter convolutional neural network for modeling quantum 
interactions, Schutt, et. al, NeurIPS 2017

[1] Neural Scaling of Deep Chemical Models - Frey, et. al. 
Nature Machine Intelligence (under review) 2022
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• Hardware mechanisms to reduce energy:
– Power Capping
– Clock frequencies scaling

• Experimental setup for Natural Language Processing, Computer Vision Models:
– Model architecture choices: BERT, DistilBERT, BigBird, ResNet, …

• GPU architectures: V100, A100, K80, T4
– Varied outcomes when testing newer (A100) and older (T4, K80) NVIDIA devices

Reducing Hardware Energy Usage

1Average US household ~29kWh/day
(https://www.eia.gov/tools/faqs/faq.php?id=97&t=3)

2Full BERT training estimates from Strubell, et. al., Energy 
and policy considerations for deep learning in NLP. ACL 2019

Initial experiments indicate significant power savings, lower operating temperatures with 
only modest impact to computational performance
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Energy Tuning on Existing Hardware

BERT training on V100 GPU with 60% power limit
Avg training time increase < 5%

Avg energy use decreases by ~15%

For a modest ~3-hour increase in training time, this intervention can save over a week’s1,2 worth of 
household energy usage.

1Average US household ~29kWh/day
(https://www.eia.gov/tools/faqs/faq.php?id=97&t=3)

2Full BERT training estimates from Strubell, et. al., Energy 
and policy considerations for deep learning in NLP. ACL 2019
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Energy Tuning on Hardware

Power-capping effective across GPU architectures
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[1] Great Power, Great Responsibility: Recommendations for Reducing Energy for Training Language Models – Findings of the NAACL 2022
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Energy-Aware Scheduling

• Schedule jobs on efficient hardware
• Carbon-aware scheduling
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Scheduling on Efficient Hardware

Idea: Pick the hardware platform best suited to solve the problem given application 
constraints (e.g., lowest latency, fastest throughput, lowest energy,…)

Application: Weather ForecastingRIBBON: cost-effective and qos-aware deep learning model inference using a diverse pool of 
cloud computing instances – Li, et al., SC 2021
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Carbon-Aware Scheduling

• Datacenter efficiency varies based on 
compute workloads, environmental 
factors,…
– Correlated with carbon intensity

• Moving a workload from day->night:
– ~7.5% energy savings (annual average)
– ~20% energy savings (hot days)

• Moving from a hot days-> a cold day:
– Nearly 30-40%! (e.g., summer->winter)
– Geographically distribute datacenters?

PUE = Power Usage Effectiveness

Idea: Leverage less carbon intense days, 
times and locations to run heavy workloads
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Collaboration Opportunities?
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• No benchmark for training/testing machine 
learning models focusing on energy usage

• Green AI Benchmarks: tasks similar to 
existing benchmarks with energy baselines:
– Problem definition and metrics
– Model categories/constraints, 

training/validation datasets
– Reasonable target accuracy
– Baseline implementations with associated 

energy stats

• Open sourcing data from our datacenter

Green AI Challenge

Energize research into reducing operational footprint with 
smarter computing technique and algorithms

https://dcc.mit.edu/
https://news.mit.edu/2022/taking-magnifying-glass-data-center-operations-0824

https://dcc.mit.edu/
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Understanding Opportunities with your Organization
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• Compute and energy requirements of AI are growing at an unsustainable rate.

• Tradeoffs between AI performance and energy consumption can offer significant 
opportunities for carbon reduction.

• Numerous approaches to reducing footprint 
– Technological, behavioral, economic, environmental, social implications

Summary

Looking for partners!
Email: vijayg@ll.mit.edu


