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E[ Growth of Al Computing Requirements

Deep Learning era
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Deep learning compute requirements are growing faster than hardware performance

GreenAl -2 11 Thompson, Neil C., Kristjan Greenewald, Keeheon Lee, and Gabriel F. Manso.
reen 2021. Deep Learning’s Diminishing Returns: The Cost of Improvement is Becoming LINCOLN LABORATORY
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Al Computing Carbon Emissions
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Deep learning energy requirements are growing unsustainably

GreenAl -3 [11 Thompson, Neil C., Kristjan Greenewald, Keeheon Lee, and Gabriel F. Manso.
2021. Deep Learning’s Diminishing Returns: The Cost of Improvement is Becoming

Unsustainable. IEEE Spectrum.

[2] The Energy and Carbon Footprint of Training End-to-End Speech
Recognizers - Parcollet, T., & Ravanelli, M., 2021
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E[ ...to put it in perspective
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Sc How about ChatGPT?
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How much carbon w
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& chat.openai.com & chat.openai.com
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E[ Other Facets

« Current datacenter energy consumption ~ 1-2% global energy demand
— Estimated to increase to 8-21% by 2030

 Significant water usage
— 20% of water from stressed watersheds
— 50% of servers supplied by power plants in water stressed areas

« Environmental footprint of Al goes beyond just datacenter usage
— E.g., carbon costs of hardware manufacturing (embodied carbon)

Opportunity to reduce ~1-2% of global electricity demand

Zhao, et. al. “A Greener World for Frey, et. al. “Benchmarking Resource Usage for

A.l”, IPDPS ADOPT 2022 Efficient Distributed Deep Learning”, LINCOLN LABORATORY

SuperComputing 2022 (Submitted) MASSACHUSETTS INSTITUTE OF TECHNOLOGY

GreenAl - 6



Greenhouse Gas Scopes and Emissions
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For a datacenter:

« Scope 1 Examples:

Backup generators

« Scope 2 Examples:

Emissions from energy
used for cooling,
computing, building
management,...

Scope 3 Examples:
Hardware manufacturing
emissions
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Image Source: https://www.epa.gov/climateleadership/scope-1-and-scope-2-inventory-guidance
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E[ Sustainability Challenges in Al

Current incentives for A.l. research, applications:
 Prioritizing best-performing models (accuracy)
« Faster run-times, more experimentation, faster results

* Publications in high-visibility journals and conferences

What gets missed:
* Prioritizing energy-efficient models
* More experiments run, more computation, more energy consumed

« Awareness of environmental footprint of Al research, applications

Research Theme: How can we make Al research and practice more sustainable?
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Understanding a Datacenter’s Carbon Footprint
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E[ How can you calculate a datacenter’s carbon footprint?

GreenAl - 10 . . LINCOLN LAB AT Y
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E[ Operational Footprint

Due to operating a datacenter

Includes, energy to IT gear as well as facilities operations (e.g., cooling)

Power Usage Effectiveness (PUE), datacenter efficiency metric

PUE — FE + IT
- IT

IT — Information technology energy
FE — Facility energy

Global average is 1.58 (2018), efficient datacenters are close to 1

Common strategy: leverage renewable energy sources for your datacenter

GreenAl - 11 LINCOLN LABORATORY
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]SE[ Moving to renewables can be a Zero-sum game

(at any given time)

U.S. electricity generation by major energy source, 1950-2020
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Note: Electricity generation from utility-scale facilities.
#=, Source: U.S. Energy Information Administration, Monthly Energy Review, Table 7.2a, January 2021 and Electric Power
€1’ Monthly, February 2021, preliminary data for 2020

Renewables are a worthy investment; Also need ways to be more energy efficient

GreenAl - 12 . . .
Image source: https://www.epa.gov/green-power-markets/us-electricity-grid-markets ,ﬁLﬁﬁ&;ﬁ;ﬁﬁgﬁﬁgﬁg



E[ Embodied Footprint

Processor Data Sheet

- With renewable, operational carbon footprint may Vendor XYZ
dramatically reduce
— Increasing proportion of carbon coming from System On Chip
manufacturing SoC Area
. . . E /A
 Embodied carbon includes manufacturing neérgy  Area
Carbon Intensity
— Energy
— Chemicals involved (e.g., for etching) Packaging

Chemical Footprint

Some estimates: 80+% of datacenter footprint due
to embodied carbon

Environmental Report

when leveraging renewables to reduce operational footprint
( ging P print) Memory Modules

DRAM
* Difficult to estimate Embodied Carbon Footprint HDD
=> Opportunities to improve!

Proposed Data Sheet

GreenAl - 13 LINCOLN LABORATORY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY



Reducing the Operational Footprint of a Real Datacenter
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]S_:[ Our Testbed: MIT SuperCloud

.............

ffffffff

Emission

- Capability

« Significant increase in computing power for

simulation, data analysis, and machine learning Processor Intel Xeon & Nvidia Volta
* Leverages power of 900 Nvidia Volta GPUs Total Cores 737,000
Peak 7.4 Petaflops
Top500 5.2 Petaflops
Memory 172 Terabytes
Peak Al Flops 100+ Petaflops
- Operates on renewable enerqgy Network Link Intel OmniPath 25 GB/s
GreenAl - 15 *Based on 2020 Top500.0rg LINCOLN LABORATORY
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E[ Research Goals

Challenge:

* Improve energy efficiency of Al applications without making large
structural changes to infrastructure or code?

Approaches — and example results:

- Better application usage - More efficient Al development

* Improve datacenter efficiency - Reduce hardware energy usage

 Reduce carbon intensity - Shifting computations for efficiency

LINCOLN LABORATORY
MASSACHUSETTS INSTITUTE OF TECHNOLOGY



E[ Efficient Al Model Development
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Architecture searches and parameter optimization have significant compute requirements

GreenAl - 17 [1] Energy-aware neural architecture selection and hyperparameter optimization — Frey, et. al,, IEEE IPDPS ADOPT 2022 LINCOLN LABORATORY
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]SE[ Why do hyper-parameter searches?

 Hyper-parameter and training
settings have significant impact to
training time and energy consumed

 For example, ResNet on ImageNet
based on MLPerf Challenge

« Example tuning settings
— Batch Size (~20% savings possible)
— Precision (going from mixed->single;

25% savings)
— Step Size Linear Decay

GreenAl - 18
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E[ Modeling performance: training speed estimation (TSE)

How do we speed up time to performance for new models and datasets?

Features and Associated Labels

( % . Training speed\

estimation
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TSE is a simple, efficient, computationally cheap method for neural architecture search

GreenAl - 19 (Ru, Robin, et al. "Speedy Performance Estimation for Neural Architecture LINCOLN LABORATORY
Search." Advances in Neural Information Processing Systems 34 (2021).)
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E[ Intervention for Efficient Neural Architecture Search
< and Hyperparameter Optimization
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Training performance estimation (TPE) combines training speed estimation and energy
consumption tracking to minimize energy expenditure
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E[ Energy-Efficient Neural Architecture Optimization for
< Graph Neural Networks

Predicted Model Performance for SchNet2
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80% total energy savings with early identification of optimal training configurations
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E[ Reducing Hardware Energy Usage

 Hardware mechanisms to reduce energy:
— Power Capping
— Clock frequencies scaling

« Experimental setup for Natural Language Processing, Computer Vision Models:
— Model architecture choices: BERT, DistilBERT, BigBird, ResNet, ...

 GPU architectures: V100, A100, K80, T4
— Varied outcomes when testing newer (A100) and older (T4, K80) NVIDIA devices

Initial experiments indicate significant power savings, lower operating temperatures with
only modest impact to computational performance

GreenAl - 22 "Average US household ~29kWh/day 2Full BERT training estimates from Strubell, et. al., Energy LINCOLN LABORATORY
(https://www.eia.gov/tools/fags/faq.php?id=97&t=3) and policy considerations for deep learning in NLP. ACL 2019 MASSACHUSETTS INSTITUTE OF TECHNOLOGY




]S_E[ Energy Tuning on Existing Hardware

BERT training on V100 GPU with 60% power limit
Avg training time increase < 5%
Avg energy use decreases by ~15%
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For a modest ~3-hour increase in training time, this intervention can save over a week’s'.2 worth of
household energy usage.

GreenAl - 23 TAverage US household ~29kWh/day 2Full BERT training estimates from Strubell, et. al., Energy LINCOLN LABORATORY
(https://www.eia.gov/tools/faqgs/faq.php?id=97&t=3) and policy considerations for deep learning in NLP. ACL 2019 MASSACHUSETTS INSTITUTE OF TECHNOLOGY




Energy Tuning on Hardware

=

NVIDIA A100 NVIDIA K80
130 TR Worse
- +19% I T|me A250 - Bl Time
& 1207 mmm Energy £ S Energy
Q
& 110 - &
g (3] 200 .
£ 100 - £
o o
: 3
o 90 2 150 -
Q Q
) o
S 90 - & 100 - Better
60 -
150W 200W 250W 100W 125W 150W
Max. Power Max. Power

Power-capping effective across GPU architectures
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E[ Energy-Aware Scheduling

888

- Schedule jobs on efficient hardware
- Carbon-aware scheduling

GreenAl - 25 LINCOLN LABORATORY
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Scheduling on Efficient Hardware
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Idea: Pick the hardware platform best suited to solve the problem given application

constraints (e.g., lowest latency, fastest throughput, lowest energy,...)

RIBBON: cost-effective and qos-aware deep learning model inference using a diverse pool of

cloud computing instances — Li, et al., SC 2021

Application: Weather Forecasting

LINCOLN LABORATORY
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E[ Carbon-Aware Scheduling

Hourly Average PUE

- Datacenter efficiency varies based on

compute workloads, environmental 1,60 -
factors,... .
— Correlated with carbon intensity .
* Moving a workload from day->night: 1.45 -
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Collaboration Opportunities?
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E[ Green Al Challenge

* No benchmark for training/testing machine

learning models focusing on energy usage ,

* Green Al Benchmarks: tasks similar to - , \ﬂﬂ
existing benchmarks with energy baselines: e | -
— Problem definition and metrics 1 Il

0

— Model categories/constraints, -
training/validation datasets

— Reasonable target accuracy

— Baseline implementations with associated
energy stats

« Open sourcing data from our datacenter

Data Written

GPU utilization

Energize research into reducing operational footprint with
smarter computing technique and algorithms

https://dcc.mit.edu/ LINCOLN LABORATORY
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https://dcc.mit.edu/

]S_E[ Understanding Opportunities with your Organization
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E[ Summary

« Compute and energy requirements of Al are growing at an unsustainable rate.

« Tradeoffs between Al performance and energy consumption can offer significant
opportunities for carbon reduction.

 Numerous approaches to reducing footprint
— Technological, behavioral, economic, environmental, social implications

Looking for partners!
Email: vijayg@Il.mit.edu
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