
Simple Data Architecture Best Practices for AI Readiness
Dr. Vijay Gadepally & Dr. Jeremy Kepner - MIT

Figure 1: Standard data collection and management steps for AI

AI1 requires data. A core requirement for AI techniques to be successful is high quality data. Hence,
preparing systems to be “AI Ready” involves collecting raw data and parsing it (steps 0 and 1 in
Figure 1) for subsequent ingest, scan, query, and analysis (steps 2, 3, and 4 in Figure 1). There are
simple techniques that can be applied during initial parsing of raw data that can dramatically reduce
the effort of applying AI. This parsing is much more efficient to do during initial collection setup
when the knowledge of the data exists with the programmer. Requiring an AI analyst to later
deduce this knowledge is a primary reason why “data wrangling” is often 80% of the effort in
building an AI system.

This document provides a short list of a few of these best practices, which can be summarized
in one word: tables. In particular, wherever possible, parse as much data as is practical into tabular
files. Try to avoid proprietary formats. If possible, use .csv (comma separated values) or even
better .tsv (tab separated values) file formats. Include column labels (each column label should be
unique within the file). Have row labels in the first column, such as row number or record number
(each row label should be unique within the file). In cases where the number of columns might be
large and lots of entries in each column might be empty (i.e., the data is sparse), it can be more
efficient to write out data in a triple format where each non-empty entry is a row in the .csv/.tsv
file as follows:

row, column, value
The triples format also encompasses the popular key-value pair model.

Avoid lots of tiny files and compress with zip when possible. Use hierarchical directories to
keep the number of items in a directory reasonable (<1000). Use well-defined directory structures
to provide easy to access information about the dataset. For example:

source/YYYY/MM/DD/hh/mm/source-YYYY-MM-DD-hh-mm-ss.tsv

or
YYYY/MM/DD/hh/mm/source/YYYY-MM-DD-hh-mm-ss-source.tsv

Databases and files can often be used together. Use databases if you need to quickly find particular
data items (i.e., you are looking for a small number of records when compared to the entire dataset).
SQL systems are good for medium size datasets that require ACID (atomicity, consistency,
isolation, and durability) guarantees. NoSQL systems are good for large datasets where ACID
guarantees aren’t required. NewSQL systems are good when you have a need for scalability +
ACID compliance. Scanning files in the file system can be best when reading in a majority of a
dataset. Given that AI is trying to predict outcomes, any outcome data that can be recorded (in any
format) is extremely helpful.

1For the purpose of this short guide, we refer to AI synonymously with statistical Machine Learning (ML)

Database
Raw
Data

Parsed
Data

Query/
Scan
Results

1. Parse 2. Ingest 3a. Query 4. Analyze

3b. Scan

0. Raw

Appendix: Why Tabular?
There are several benefits of placing data in a tabular format.

AI. Most AI algorithms, such as, deep neural networks (DNNs), use matrix mathematics
to perform their computations. Data in a tabular format is easily read into a matrix. Most AI tools
support reading .csv/.tsv files for this purpose.

General Analysis. Most data analysis tools provide support for reading .csv/.tsv files.
Python, R, Julia, and Matlab programmers often call tables dataframes and the machine learning
(ML) community often refer tables as tensors.

Databases. Databases are ideal for sorting data and enabling fast retrieval of specific
records. Most database store data in tables and support reading .csv/.tsv files.

Debugging. Log files can be very helpful for debugging applications. Raw logs are often
difficult to view and analyze. Placing data in a tabular .csv/.tsv allows the programmer to quickly
view a log with Microsoft Excel or other spreadsheet tool.

Incidence Response. Security compliance guidelines (such as the RMF risk management
framework), recommend/require that logs be kept. If logs are in a readily analyzable
tabular .csv/.tsv format they can play an important role in accelerating the containment assessment
phase of an incidence response.

Appendix: Serial/Parallel Files/Databases
In Figure 1, we have two alternatives (3a. querying a database and 3b. scanning of files) that can
be used together to access data. Figure 2 gives a high-level overview of when to use files vs.
databases on a serial or a parallel (distributed) system. Usage of files or databases is often
determined by how much data is desired (data request size) and where the total data volume
physically fits: from the memory of a single (serial) processor to many (parallel) storage devices.

Figure 2 Files and databases can be used together. As a high-level rule of thumb, retrieving >10% of a full dataset,
may be well-served dealing by scanning files. For very large datasets, a parallel program leveraging distributed
storage can accelerate this scanning.

Additional References
Mathematics of Big Data: Spreadsheets, Databases, Matrices, and Graphs

https://mitpress.mit.edu/books/mathematics-big-data
Data Management, Polystores, and Analytics for Healthcare

https://link.springer.com/content/pdf/10.1007/978-3-030-14177-6.pdf
AI Enabling Technologies: A Survey

https://arxiv.org/abs/1905.03592

Total Data Volume

D
at

a
R

eq
ue

st
 S

iz
e

word

all

serial
memory

serial
storage

parallel
memory

parallel
storage/

Serial Program Serial/Parallel Program
+ DB

Parallel Program
+ Parallel DB

Serial Program Serial or Parallel Program
+ Files

Parallel Program
+ Parallel Files

