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Abstract

AI application developers typically begin with a dataset of interest
and a vision of the end analytic or insight they wish to gain from the
data at hand. Although these are two very important components of an
AI workflow, one often spends the first few weeks (sometimes months) in
the phase we refer to as data conditioning. This step typically includes
tasks such as figuring out how to prepare data for analytics, dealing with
inconsistencies in the dataset, and determining which algorithm (or set
of algorithms) will be best suited for the application. Larger, faster, and
messier datasets such as those from Internet of Things sensors, medical de-
vices or autonomous vehicles only amplify these issues. These challenges,
often referred to as the three Vs (volume, velocity, variety) of Big Data,
require low-level tools for data management, preparation and integration.
In most applications, data can come from structured and/or unstructured
sources and often includes inconsistencies, formatting differences, and a
lack of ground-truth labels.

In this report, we highlight a number of tools that can be used to
simplify data integration and preparation steps. Specifically, we focus on
data integration tools and techniques, a deep dive into an exemplar data
integration tool, and a deep-dive in the evolving field of knowledge graphs.
Finally, we provide readers with a list of practical steps and considerations
that they can use to simplify the data integration challenge. The goal of
this report is to provide readers with a view of state-of-the-art as well as
practical tips that can be used by data creators that make data integration
more seamless.
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1 Executive Summary

Many AI application developers typically begin with a dataset of interest and
a vision of the end analytic or insight they wish to gain from the data at hand.
Although these are two very important components of the AI pipeline, one of-
ten spends the first few weeks (sometimes months) in the phase we refer to
as data conditioning. This step typically includes tasks such as figuring out
how to store data, dealing with inconsistencies in the dataset, and determining
which algorithm (or set of algorithms) will be best suited for the application.
Larger, faster, and messier datasets such as those from Internet of Things sen-
sors [1], medical devices [2, 3] or autonomous vehicles [4] only amplify these
issues. These challenges, often referred to as the three Vs (volume, velocity,
variety) of Big Data, require low-level tools for data management and data
cleaning/pre-processing. In most applications, data can come from structured
and/or unstructured sources and often includes inconsistencies, formatting dif-
ferences, and a lack of ground-truth labels. In practice, there is a wide diversity
in the quality, readiness and usability of data [5].

It is widely reported that data scientists spend at least 80% of their time do-
ing data integration and preparation [6]. This process involves finding relevant
datasets for a particular data science task (i.e., data discovery [7]). After the
data has been collected, it needs to be cleaned so that it can be used by subse-
quent ML models [8]. Data cleaning or data preparation refer to several data
transformations to make the data reliable for future analysis. Example trans-
formations include: (1) finding and fixing errors in the data using rules (e.g.,
an employee salary should not exceed $1M); (2) normalizing value representa-
tions [9]; (3) imputing missing values [10, 11]; and (4) detecting and reconciling
duplicates.

This document provides a survey of the state-of-the-art in data preparation
and integration. To help make concepts clearer, we also discuss a tool developed
by our team called Data Civilizer [8]. Additionally, we detail the concept of
Knowledge Graphs - a technique that can be used to describe structured data
about a topic as a tool for organizing data with applications in data preparation,
integration and beyond. Finally, this document highlights a number of practical
steps, based largely on experience, that can be used to simplify data preparation
and integration. A summary of these steps is given below:

1. Data Organization

• Leverage tools for schema integration

• Use standardized file formats and naming conventions

2. Data Quality and Discovery

• Maintain data integrity through enforceable constraints

• Leverage workflow management systems for testing various hypoth-
esis on the data
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• Include data version control

• Leverage data discovery tools

3. Data Privacy

• Leverage encrypted or secure data management systems as appropri-
ate

• Limit data ownership

• Avoid inadvertent data releases

• Be aware that data aggregated may be sensitive

4. Infrastructure, Technology and Policy

• Use data lakes as appropriate

• Databases and files can be used together

• Leverage federated data access

• Access to the right talent

• Pay attention to technology selection, software licensing and soft-
ware/hardware platforms

• Maintain an acquisition and development environment conducive to
incorporating new technology advances
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2 Data Integration Introduction and Challenges

Many AI application developers typically begin with a dataset of interest and
a vision of the end analytic or insight they wish to gain from the data at hand.
Although these are two very important components of the AI pipeline, one of-
ten spends the first few weeks (sometimes months) in the phase we refer to
as data conditioning. This step typically includes tasks such as figuring out
how to store data, dealing with inconsistencies in the dataset, and determining
which algorithm (or set of algorithms) will be best suited for the application.
Larger, faster, and messier datasets such as those from Internet of Things sen-
sors [1], medical devices [2, 3] or autonomous vehicles [12] only amplify these
issues. These challenges, often referred to as the three Vs (volume, velocity,
variety) of Big Data, require low-level tools for data management, data integra-
tion [13] and data preparation (this includes data cleaning/pre-processing). In
most applications, data can come from structured and/or unstructured sources
and often includes inconsistencies, formatting differences, and a lack of ground-
truth labels. One interesting way to think about data preparedness is through
concept of data readiness levels as outlined in [5] which is similar to the idea of
technology readiness levels (TRL) [14].

It is widely reported that data scientists spend at least 80% of their time
doing data integration and preparation [6, 15]. This process involves finding
relevant datasets for a particular data science task (i.e., data discovery [7]).
After the data has been collected, it needs to be cleaned so that it can be
used by subsequent ML models [8]. Data cleaning or data preparation refer
to several data transformations to make the data reliable for future analysis.
Example transformations include: (1) finding and fixing errors in the data using
rules (e.g., an employee salary should not exceed $1M); (2) normalizing value
representations [9]; (3) imputing missing values [10, 11]; and (4) detecting and
reconciling duplicates.

At a high level, the concept of data integration and preparation is the effort
required to go from raw sensor data to information that can be used in further
processing steps (see the Artificial Intelligence architecture provided in [16]).
Sometimes this phase is also referred to as data wrangling. Typically, each of
these data integration and preparation tasks can be cumbersome, require sig-
nificant domain knowledge, and represent a significant hurdle in developing an
end-to-end application. Many of the recent algorithmic advances have, in fact,
occurred in areas where ”prepared” data can be found. For example, advances
in image classification were largely driven by the availability of the ImageNet
dataset [17], advances in handwriting recognition by the Modified National In-
stitute of Standards and Technology (MNIST) dataset [18], and advances in
video recognition by the Moments in Time dataset monfort2018moments. Other
popular datasets such as CIFAR-10 [19], and Internet packet capture traces
[20, 21, 22] have played important roles in advancing certain classes of algo-
rithms and genres of applications. Data integration and preparation is often a
first step in getting one’s data into such a form.

There are a number of research efforts and organizations aiming to reduce
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the data integration and preparation barrier to entry. For example, there are
techniques to do spectral fingerprinting of datasets to look for outliers [23],
techniques for modelling the background of datasets [24], and techniques for
organizing data into federated data management systems [25, 26, 27, 28]. As
examples of end-to-end data applications, [29] describes an oceanographic data
use-case and [30] describes a medical use-case.

In this report, we highlight a number of tools that can be used to simplify
data integration and preparation steps. Specifically, we focus on data integra-
tion tools and techniques, a deep dive into an exemplar data integration tool,
and a deep-dive in the evolving field of knowledge graphs. Finally, we provide
readers with a list of practical steps they can use to simplify the data integration
challenge. The goal of this report is to provide readers with a view of state-of-
the-art as well as practical tips that can be used by data creators that make
data integration more seamless.
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Figure 1: Data Civilizer architecture

3 Tools and Techniques

3.1 Data Integration Challenges

It is widely reported that data scientists spend at least 80% of their time do-
ing data integration and preparation [6]. This process involves finding relevant
datasets for a particular data science task (i.e., data discovery [7]). After the
data has been collected, it needs to be cleaned so that it can be used by subse-
quent ML models [8]. Data cleaning or data preparation refer to several data
transformations to make the data reliable for future analysis. Example trans-
formations include: (1) finding and fixing errors in the data using rules (e.g.,
an employee salary should not exceed $1M); (2) normalizing value representa-
tions [9]; (3) imputing missing values [10, 11]; and (4) detecting and reconciling
duplicates,

3.2 Data Integration Tasks

As part of our Data Civilizer effort [6] we have developed modules that deal with
the most common data integration tasks. Figure 1 illustrates the architecture of
Data Civilizer. Users author their data integration workflows using the Studio.
The building blocks of the workflows are pre-packaged data integration modules
that were designed to target the most common pain points in data integration.
The Engine then runs the workflow.

We briefly describe each module and the task it addresses.
Data Discovery: First off, data scientists need to find relevant data tables
from disparate data sources (e.g., data lake) that they could use for a particular
task (e.g., find customers who have been making timely payments over the past
5 years). This step is referred to as Data Discovery. Data Civilizer includes a
module, Aurum [7], that allows users to find relevant data tables given various
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queries (e.g., is there a PK-FK relationship between the customers table and
the payment history?).
Data Preparation: This step, also known as Data Cleaning, encompasses all
the data transformations that are needed to bring the data to a “usable” format.
Examples of data preparation include data standardization (e.g., use CS instead
of Computer Sci. or Computer S.) and filling in missing values. We now present
some of the data preparation modules we have developed in Data Civilizer.

• PKDuck [9] performs approximate string joins to map abbreviations with
their full forms in a given set of table columns. PKDuck helps standard-
ize values representation for downstream processing by replacing the full
string forms with their corresponding abbreviations.

• ImputeDB [10] performs query-time missing values imputation. Given a
query, ImputeDB generates a query plan that includes imputation oper-
ators to efficiently impute missing numerical values using any plugable
statistical imputation technique.

• Fahes [11] detects disguised missing values (DMVs) in the data using out-
liers and inliers detection techniques for categorical and numerical data.
Fahes replaces DMVs with NULL in each input table.

• DeepER [31] performs entity resolution using deep learning methods. Specif-
ically, DeepER benefits from pre-trained word embeddings and user-provided
training data to detect duplicate records. Additionally, DeepER makes use
of blocking to reduce the number of record comparisons.

• Aurum [7] helps navigating a large collection of tables to perform data
discovery by building an Enterprise Knowledge Graph (EKG) that encodes
relationships between those tables. Users can query the EKG to answer
various data discovery questions (e.g., joinable tables).

• A Golden Record [32] module was developed to consolidate duplicates into
a single record (golden record). Before attempting to fuse the duplicate
records, this module first standardizes value representations by learning
candidate transformations from the data. Those transformations are then
presented to the user for validation.

We now move on to the latest version of Data Civilizer, which, in addition
to the aforementioned data integration features, includes major improvements
geared towards making the jobs of data scientists easier.
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4 Bridging the Gap between Data Preparation
and Data Analytics

Data scientists spend the bulk of their time cleaning and refining data work-
flows to answer various analytical questions. Even the most simple tasks require
using a collection of tools to clean, transform and then analyze the data. When
a machine learning model does not produce accurate results, it is due to (1) raw
data not prepared correctly (e.g., missing values); or (2) the model needs to be
tuned (e.g. fine-tuning of the model’s hyperparamters).While there are many
efforts to address those two problems independently, there is currently no sys-
tem that addresses both of them holistically. Users need to be able to iterate
between data preparation and fine-tuning their machine learning models in one
workflow system. We worked with scientists at the Massachusetts General Hos-
pital (MGH), one of the largest hospitals in the US, to accelerate their workflow
development process. Scientists at MGH spend most of their time building and
refining data pipelines that involve extensive data preparation and model tun-
ing. Through our interaction, we pinpointed the following hurdles that stand in
the way of fast development of data science pipelines (in the sequel, we use the
words “pipeline” and “workflow” interchangeably).
Decoupling Data Cleaning and Machine Learning: When it comes to
building complex end-to-end data science pipelines, data cleaning is often the
elephant in the room. It is estimated that data scientists spend most of their
time cleaning and pre-processing raw data before being able to analyze it. While
there are a few emerging machine learning frameworks [33, 34, 35], they fall short
when it comes to data cleaning support. There is currently no interactive end-
to-end framework that walks users from the data preparation step to training
and running machine learning models.
Coding Overhead: In larger organizations, it is typically the case that sev-
eral scientists/engineers write scripts that deal with different parts of the data
science pipeline. While many data science toolkits and libraries (e.g., scikit-
learn) have gained a wide adoption amongst data scientists, they are only meant
to build standalone components and hence are not well-suited to building and
maintaining pipelines involving a wide variety of tools and datasets. As a result,
scientists have to write code to build and maintain data pipelines and update
the code whenever they need to refine them. Because building data pipelines
is a trial-and-error process, maintaining scripts hardwired for specific pipelines
is time-consuming. Moreover, the effort required to try out different pipelines
typically limits the exploration space.
Debugging Pipelines: When building a pipeline involving different modules
and datasets, it is typical that the final output data does not look right. This is
typically due to (1) a problem in the modules (e.g., bug, bad parameters); or
(2) the input data to the modules was not good enough to produce reasonable
results (e.g., missing values). The latter case is hard to debug using current
debuggers that focus mainly on code, i.e., users have to dump and inspect
intermediate data to find where it went wrong. Since it takes hundreds of
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iterations to converge to a pipeline that works well for the task at hand, a
data-driven debugger can significantly decrease the time spent in this process.
Visualization: Different datasets require different types of visualizations (e.g.,
time series, tables). Typically, scientists visualize the data in its raw format
(e.g., tables) or manually visualize the data using commodity software like
Microsoft Excel. However, when building pipelines iteratively, it is daunting
to seamlessly integrate visualization applications (panning, zooming) into the
pipeline-building process. Moreover, users need to spend a lot of time if they
elect to write custom visualizations of their datasets.
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Figure 2: DC2 Architecture

There are several efforts to support data cleaning tasks [36, 37, 38], iterative
machine learning workflow development [39, 34, 33, 40], and data workflow
debugging [41]. Each of those efforts focuses on one aspect of the pipeline
development at a time, but not all.

The previous version of Data Civilizer [6, 7, 42] focused on data discovery
and cleaning using pre-defined tools. In most scenarios, users clean their data
to feed it to machine learning models.

We introduce Data Civilizer 2.0 (DC2, for short) to fill the gap between data
cleaning and machine learning workflows and to accelerate iterative pipeline
building through robust visualization and debugging capabilities. In particular,
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DC2 allows integrating general-purpose data cleaning and machine learning
models into workflows with minimal coding effort. The key features of DC2
are:

• User-defined modules: In addition to a state-of-the-art cleaning and dis-
covery toolkit that we already provide [42], users can also integrate their
data cleaning and machine learning code into DC2 workflows through a
simple API implementation. Users have to simply implement a function
that triggers the execution of the module they are adding.

• Debugging: DC2 features a full-fledged debugger that assists users in
debugging their pipelines at the data level and not at the code level. For
instance, users can run workflows on a subset of the data, track particular
records through the workflow, pause the pipeline execution to inspect
output produced so far, and so on.

• Visualization: At the core of DC2 is a component that allows users to
easily implement their own visualizations to better inspect the output of
the pipeline’s components. We have pre-packaged a few visualizations
such as progress bars for arbitrary services, coordinated table views, etc.

4.1 System Architecture

We provide a high-level description of the DC2 architecture (Figure 2) and
details are discussed in the subsequent subsections. DC2 includes three core
components: (1) User-Defined Modules cover required functionalities to sup-
port plugging-in existing user-defined modules into the workflow system (Sec-
tion 4.1.1); (2) Debugger which includes a set of operations to do data-driven
debugging of pipelines (Section 4.1.4) and; (3) Visualization abstractions to fa-
cilitate building scalable visualization applications to inspect the data produced
at different stages of the pipeline (Section 4.1.3). Users interact with DC2 using
the DC2 Studio, which is a front-end Web GUI interface to author and monitor
pipelines.

4.1.1 User-defined Modules

Users can plug-in any of their existing code into a DC2 workflow. Because
cleaning and machine learning tools can vary widely, DC2 features a program-
ming interface that is abstract enough to cover any data cleaning or machine
learning module.
Module Specification. In order to specify a new module in DC2, users
must (1) implement a module execution function (executeService) using the DC2
Python API; (2) load the module into DC2 by specifying its entry point file, i.e,
the file that contains the implementation of the module execution function; and
(3) write a JSON file to list the parameters the module requires for execution.
Pipeline Execution. Service execution happens in two phases: (1) Studio
generates a JSON object containing the authored workflow, which includes:
module names, parameters and the connections between modules. This JSON
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object is then passed to the backend (workflow manager in Figure 2) to run the
workflow and; (2) every module produces a JSON object containing the path of
output CSV files which are then passed to the next module in the workflow. All
the DC2 modules use a “table-in, table-out” principle, i.e., input and output
of all modules is a table. In case the module fails to run, an error code is sent
back to DC2 and the pipeline execution is stopped.
executeService: The module execution function (executeService) takes as ar-
gument the JSON file generated from the DC2 studio. This JSON file contains
the parameter values as specified from the studio for the individual modules as
well as the authored workflow. Every module (1) reads a set of CSV input files;
(2) writes a set of CSV output files; and (3) might use metadata files if specified
as an argument.

Every module can produce various output streams. We separate them into:
output and metadata. Files produced under the output stream are passed on
to any successor modules in the pipeline while files in the metadata stream
are just meant to serve as “logs” that users can inspect to debug the module.
For instance, a similarity-based deduplication module can produce an output
stream containing the duduplicated tuples and a metadata stream that includes
the similarity scores between pairs of tuples that were marked as duplicates.
Each module has to produce a JSON file (output JSON) that specifies which
files are produced as output or metadata.
I/O Specification. Every DC2 module is associated with a JSON file (input
JSON) containing the list of parameters the module expects and their type.
Additionally, the input JSON contains the module metadata (e.g., module name,
module file path). DC2 Studio needs this specification to load the module into
the GUI (e.g., if a module expects two parameters, two input fields are created
in the GUI for that module).

4.1.2 Managing Machine Learning Models

DC2 supports adding machine learning models in the workflow. We integrated
ModelDB [43] into DC2 to offer first-class support for machine learning model
development. ModelDB supports the widely used scikit-learn library in Python.
Users who include machine learning modules in the pipeline can (1) track the
models on defined metrics (e.g., RMSE, F1 score); (2) implement the ModelDB
API to manage models built using any machine learning environment; (3) query
models’ metadata and metrics through the frontend; and (4) track every run of
the model and its associated hyperparameters and metrics.

Moreover, we have implemented a generalization of ModelDB to track met-
rics in any user-defined module through a light API. The DCMetric class con-
tains the following methods:

• DCMetric(metric name): constructor which takes the name of the metric
as a string (e.g., f1 score).

• setValue(value): sets the metric value. The metric can be set multiple
times per run but only the final set value is exposed in DC2 Studio.
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• DC.register(metric): the defined metric object is registered through this
function. Registration is required so the metric is surfaced in the studio.

The following is an example code snippet to track a metric “f1”. First, the
metric is defined (line 1). Then, the metric value is set (line 2). The metric
value is finally reported to DC2 (line 3).

1 DCMetric metric_f1 = new DCMetric("f1")

2 metric_f1.setValue(f1score)

3 DC.register_metric(metric_f1)

4.1.3 Visualization

MGH datasets are massive. For instance, the one we use in this use case is
30TB. Because we wanted to enable interactive visualizations at scale, we in-
tegrated Kyrix [44], a state-of-the-art visualization system for massive datasets
into DC2. With Kyrix, users can write simple code to build intuitive visualiza-
tion applications that support panning and zooming. The MGH scientists we
worked with confirmed that visualization is a key component to make it easier
for them to inspect their datasets. While users can write their own visualization
applications using the Kyrix API, DC2 comes with a few generic visualization
applications: (1) Progress reporting: services report their progress periodically
to the Studio through a progress bar; (2) Multi-Canvas Table Views (MCTV):
users can click on arcs interconnecting modules on the pipeline to visually in-
spect the intermediate records passing between the modules and run queries
on them (e.g., filter based on predicate); and (3) Coordinated Views: in the
MCTV, when users select a record in one canvas, other records are selected
on other canvases based on a user-defined function (e.g., provenance, records
sharing same key). DC2 comes with an API for easy integration of Kyrix visu-
alization applications in the DC2 Studio (e.g., show a visualization application
after clicking on a particular module).

4.1.4 Debugging Suite

We have seen pipelines that run for hours, so the goal of the DC2 debugger
is to catch data-related anomalies (e.g. input data is malformed in one of the
modules) early in the workflow execution, so that “bad” data is not passed
to downstream processing. DC2 features a set of human-friendly debugging
operations to assist users in debugging their pipelines. We implement a GDB-
like debugger that is data-driven. Users can add breakpoints by specifying a
record or a set of records that satisfy predicates. Pipeline execution is paused
upon reaching a breakpoint so that users can inspect visually what is going on
so far in the pipeline. The following are the key debugging operations that DC2
provides.

• filter: while building a data pipeline, users typically experiment with
smaller datasets before testing their pipelines on the entirety of the data.

14



The filter operation allows users to specify a set of predicates to extract
smaller subsets from the input datasets. For instance, if the filter is City =
“Chicago”, then, only records with City value of “Chicago” will be passed
as input to the respective module.

• track: an important operation when refining pipelines is to be able to
track a set of records to make sure the pipeline is working as expected.
Users can specify filters to track records in the pipeline (e.g., track records
whose City attribute value is “Chicago”). Whenever a record satisfies
the defined filter, it is added to a tracking file which contains (1) the
attribute values of the record before and after going through the module;
and (2) information related to the module that produced the record (e.g.,
name of the module, list of parameter values).

• breakpoints: users can specify breakpoints in the pipeline using filters.
Whenever a record satisfies the filter, the execution is paused to allow the
user to inspect the record at the breakpoint. Users can then manually
resume the execution.

• pause/resume: this is a way for users to pause/resume the execution
from the Studio. This functionality is implemented using breakpoints
(more details in Sections 4.1.5 and 4.1.6). This operation is useful when
users only want a certain module to run for a limited period of time (e.g.
pause after 5 seconds). When users inspect the output and validate it,
then they can resume the execution.

4.1.5 Manual Breakpoints

Data breakpoints serve as “inspection” points in the pipeline, i.e., they are
used to inspect records of interest. For instance, in a deduplication module, if
users notice that records whose “City” value is “Chicago” are always incorrectly
deduplicated, they can add a breakpoint on records that meet the filter City =
“Chicago”, then the pipeline execution is paused whenever a record that meets
the filter is encountered. We provide an API to allow users to programmatically
define functions to set data-driven breakpoints. Those functions are used by
the DC2 Studio to allow users to interactively set breakpoints on records that
satisfy a given user-provided filter. Three key functions need to be implemented
in the entry point file (file containing the DC2 API implementation) to enable
manual breakpoints: (1) setBreakpoint which takes as argument a filter (e.g.,
City = “Chicago”); (2) pause to pause the execution when a record satisfying
the filter is encountered; and (3) resume to resume the execution after the user
has inspected the records on the breakpoint.

4.1.6 Automatic Breakpoints

In some cases, implementing the API to enable manual breakpoints can be time-
consuming. To address this hurdle, DC2 can create breakpoints in modules
automatically (i.e., without requiring users to implement an API). This is done
by partitioning the input data (of the module) into different subsets and running
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the module with each partition. The goal is to be able to detect errors in
the output of the module run with fewer partitions than with the entirety of
the data. For instance, when running a classification module (with an already
trained model), users might want to inspect the output for every 10% of the
input data which results in nine breakpoints, i.e., output is shown after 10%,
then after 20%, and so on. Additionally, the classification label of a given
record does not change whether we run the model with the entire data or only
a partition. If users detect misclassified records with a run using 20% of the
input data, then, there is no reason to run the module for the remaining 80%
records. Moreover, users can specify predicates to create partitions (blocking).
For instance, “City = *” would create partitions (or blocks) where records in the
same partition share the same value of the “City” attribute. Users can create
automatic breakpoints from the DC2 studio.

1

1

2

2
3

3

(a) (b)

A

Figure 3: (a) EEG pipeline example. (b) Visualization of numbered components.
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5 Data Civilizer Use Case

We used DC2 in a real-world a medical use case with a group of scientists
at MGH studying brain activity data captured using electroencephalography
(EEG). Figure 3(a) illustrates an example pipeline to clean the EEG data before
running it through a machine learning model. In Figure 3(a), each numbered
module in the pipeline has its corresponding visualization in Figure 3(b) (e.g.,
module numbered 1 corresponds to raw data input).
Study. Scientists at MGH start with a study goal (e.g., early detection of
seizures using EEG data), and then prepare the relevant datasets using cleaning
modules. They then apply machine learning models to perform a prediction
task. In the case of this use case, they want to predict seizure likelihood given
EEG labeled segments. This process is iterative in nature and it takes several
iterations to converge to a “good” data pipeline. We helped the MGH scientists
clean and then analyze the EEG data using machine learning models. We will
walk the audience through how DC2 was used to help quickly design and execute
data pipelines to carry out the study at hand.
Dataset. The EEG dataset pertains to over 2,500 patients and contains 350
million EEG segments. The total dataset size is around 30TB. Active learning
is employed to iteratively acquire more and more labeled EEG segments as
described in the scenario below.
Scenario. The workflow scenario goes as follows: (1) Raw EEG data is cleaned.
In addition to the cleaning toolkit that comes with DC2, we plugged the cleaning
tools MGH scientists use to clean the data into DC2 as user-defined modules.
An example cleaning task is to remove high-frequency signals (e.g., area A in
Figure 3(b)); (2) Using the visualization component of DC2, the specialists inter-
actively explore the 30T EEG data and then label the EEG segments based on
their domain knowledge; (3) After acquiring a set of manually labeled segments,
a label propagation algorithm, as a user-defined component of DC2, automati-
cally propagates labels to the nearby segments of the existing labeled segments;
(4) A deep learning model is then learned using part of the labeled segments as
training set. During this process, the DC2 debugger is fully explored to tune
the hyper-parameters and the network structures; (5) Active learning is then
conducted to improve the quality of the automatically acquired labels. First,
the labeled segments out of the training set are classified by the learned model.
Then using the ModelDB component of DC2 the 2000 segments are efficiently
extracted where the neural net had highest confidence but disagreed with the la-
bels; (6) These segments are then fed back into the visualization component for
the domain experts to decide whether they need to update their labels (go back
to step 3) or review the cleaning step (go back to step 1). This iterative process
proceeds until the neural net reaches a satisfactory classification accuracy.
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6 Knowledge Graphs

6.1 Background and Terminology

Knowledge Graphs — sometimes called a Knowledge Network or structured
Knowledge Bases — are a relatively novel way to describe structured data
about a particular topic. Examples include Wikidata ([45]), DBpedia ([46]),
the Google Knowledge Graph ([47]), UniProt ([48]), MusicBrainz ([49]), GeoN-
ames ([50]), and many others ([51, 52, 53]). They have had slightly different
definitions over the years. For the sake of this document, we think of a Knowl-
edge Graph as a data resource in which:

• There exists a set of unique entities that correspond to real-world objects.
For example, entity Q76 represents Barack Obama in the Wikidata knowl-
edge network, and entity Q6279 represents Joe Biden. Different knowledge
graphs make different decisions about what entities should be contained.
For example, there is a Joe Biden entity in Wikidata, but not in the Mu-
sicBrainz knowledge network, which specializes in recorded music1. These
can be thought of as the nodes in the knowledge graph.

• There are unique properties that describe a relationship between an entity
and a data value. For example, Wikidata property P19 describes the place
of birth relationship. For most knowledge graphs, properties are expressed
with two values, at least one of which must be an entity. For example, the
place of birth property describes a relationship between two entities in the
knowledge graph, one of which is usually a person, and the other usually
a location. In contrast, Wikidata’s property P569 (date of birth) usually
describes a relationship between a single entity and a data value. These
can be thought of as potential edge labels in the knowledge graph.

• By combining entities, properties, and data values, the knowledge graph
asserts a large number of true facts about real-world objects. For example,
Wikidata states that (Q76, P26, Q13133) is true. That is, Barack Obama
(Q76) has spouse (P26) of Michelle Obama (Q13133). These triples can
be thought of as concrete labeled edges in the knowledge graph.

Our definition for a knowledge graph places it outside the ambiguity and
reference problems often caused by natural language. For example, Wikidata
properties P19 (place of birth) and P569 (date of birth) could both be described
in English by the phrase “born in,” but this point is irrelevant for the knowledge
graph’s correctness. There are two real-world and distinct relationships, so
there are two distinct properties in Wikidata. Some applications, such as voice
assistant question answering, might have to manage linguistic ambiguity, but
that challenge is the responsibility of the application, not the knowledge graph.

1Because Barack Obama recorded the audiobooks for his self-authored
books, he appears in both Wikidata and MusicBrainz. His MB identifier is
0de4d19f-05c8-4562-a3c0-7abdc144f1d5.
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Figure 4: On the left, a fraction of a general-purpose knowledge network. On
the right, a fraction of an Economics-specific knowledge network.

There is nothing preventing us from using KGs to contain entire datasets
rather than single scalar values. For example, it could make sense to create an
entity to model a well-known GDP dataset for practicing economists, which has
multiple columns and rows; or a set of vessels when managing a fleet. Indeed,
Wikipedia already does something similar when its entities contain datasets,
as in the case of the Wikipedia entity Economy of the United States, which
contains annual stats for GDP, inflation, unemployment, and so on.

Figure 4 shows two small example knowledge graphs. The figure on the left
shows a portion of a general-purpose knowledge graph. The edge labels appear
in many edges in the graph. The figure on the right shows an Economics-specific
knowledge graph.

Our definition is not entirely consistent with all of the academic literature.
There are academic knowledge graphs that could potentially create a node for
every distinct noun phrase in a text, even if they refer to identical real-world
objects, such as VerbKB ([54]). However, our definition is consistent with the
major deployed knowledge graphs, such as Wikidata, DBpedia, and many oth-
ers2.

6.2 Graph Databases

It is useful to distinguish between a knowledge graph and graph database soft-
ware. Graph database systems, such as Neo4j [59] or Amazon Neptune [60]
offer query and update services for graph-oriented datasets, much like rela-
tional database systems do for traditional relational datasets. Just as tradi-
tional database software like Oracle offers the SQL relational query language,
graph databases will offer a query language tailored for graphs. The most pop-
ular language is probably SPARQL, although Neo4j’s Cypher language is both
well-known and especially relevant when processing knowledge graphs.

Like SQL, graph query languages enable the user to ask precise and inter-
esting analytical questions, but most users do not have the training needed to

2Linguistically-driven networks like VerbKB are useful in some cases. For example, Biper-
pedia is a “best effort” data resource extracted from text that can help search applications
([55]). Also, there is a growing literature in the NLP area that attempts to use text directly
for question answering ([56, 57, 58]), without producing a knowledge network at all, but these
efforts today are primarily still in the research sphere and it is unclear how to extend them
to non-question-answering applications.
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write them. For example, here is a simple query (drawn from the World Wide
Web organization’s SPARQL tutorial) that obtains a list of 50 spacecraft from
a knowledge graph:

PREFIX space: <http://purl.org/net/schemas/space/>

SELECT ?craft

{

?craft a space:Spacecraft

}

LIMIT 50

It is possible to understand this code, but writing even this simple query
will require user training.

Graph databases are designed to store a wide variety of graph-structured
information, not just knowledge graph data. They are also useful for storing
social network data, hyperlink data, bioinformatics data, and other kinds. In-
deed, most applications of graph databases do not involve knowledge graphs.
Knowledge graphs are usually of fairly modest size compared to other kinds of
graph-structured data. Consider that as of this writing, Facebook has about
2.5 billion users in its social graph, while Wikidata has only 81 million entities
in its knowledge graph.

Graph database systems and knowledge graphs are sometimes confused, but
they play different roles. A knowledge graph is a certain kind of dataset, while
a graph database system is a piece of software. Although they are often useful
together, one cannot be substituted for the other.

6.3 Application Examples

There has been a substantial amount of research into methods for construct
knowledge graphs, such as information extraction [61, 51, 62, 40, 63, 52, 64, 65]
and crowdsourcing [66, 67, 68, 69, 68].

In contrast, there has been relatively little research into the knowledge ap-
plications built on top of KGs, outside a few important but narrow use cases,
such as personal assistants [70] and precision medicine [71].

The best-known industrial use cases of knowledge graphs are structured web
search (see Figure 5 and voice assistants such as Siri, the Google Assistant, and
Amazon’s Alexa product. In both types of systems, a knowledge graph serves
as a generic multitopic database to produce user answers.

It is perhaps useful to consider the rough pipeline of steps that take place
in a voice assistant to understand the role that a knowledge graph plays.
Imagine that a user has just asked the Google Assistant, ”Where was Barack
Obama born?” Conventional engineering wisdom suggests the voice assistant
goes through the following steps:

1. The device records user speech saying, ”Where was Barack Obama born?”

2. Voice assistant software uses a speech-to-text system to translate the ut-
terance into a textual string
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Figure 5: A Google search yields the traditional list of hyperlinks at the left,
and often a knowledge graph-derived structured results on the right-hand side.
In this case, born, Full name, and Height are all properties of the Barack
Obama entity in the KG.

3. The voice assistant applies natural language processing methods to the
text string in order to translate it into a structured graph query in
SPARQL or something similar.

4. A graph database system that stores the knowledge graph will execute the
SPARQL query and return a result.

5. The voice assistant will turn the result into audio that can be played to
the user.

A large and high-quality knowledge graph is necessary, but not sufficient,
for a successful voice assistant. The voice assistant can only answer questions
that have answers in the knowledge graph, which potentially explains Google’s
private efforts to create a very large one [47].

6.4 Wikidata

Wikidata is a widely-used open-source knowledge graph. Wikidata was founded
in 2012 and has since become the largest and most successful of the public
general-interest knowledge graphs. Wikidata is unusual in being both very large
and very transparent. In contrast, most other knowledge graphs are either small
research projects or large private endeavors. It is a volunteer nonprofit effort,
with funding donated from various charitable and scientific organizations.

As of this writing, Wikidata contains structured data about roughly 82M
entities. An entity is any general-interest real-world object, such as Barack
Obama (https://www.wikidata.org/wiki/Q76), the city of Chicago (https://
www.wikidata.org/wiki/Q1297), the Federal Reserve (https://www.wikidata.
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org/wiki/Q53536), or the US Navy (https://www.wikidata.org/wiki/Q11220).
Wikidata contains approximately 1 billion factual statements. Roughly half of
the entities (40M) contain 10 or more factual statements.

Wikidata is remarkable in its ability to simultaneously obtain large scale
and data quality. Not only is the factual precision high, the set of properties
and types — Wikidata’s version of a schema — is remarkably consistent across
the dataset. For example, there is a single property spouse that is widely used;
there are few or no unnecessary duplicates of the concept. This might not sound
like a major achievement, but consider much overlap and duplication exists in
all the relational database schemas in an organization. Even a simple concept
like employee can be modeled in many different ways in different databases; if
the organization wants to run a query that examines all of the employees, it
often must perform a long and expensive data integration process. Wikidata is
somehow able to avoid most of these modeling and integration problems, even
though its dataset and topic diversity are vast.

It is not entirely clear which Wikidata practices are most responsible for
their success, but here are a few notable ones:

1. Almost any user can contribute a new fact to Wikidata, without any
scrutiny before it is added and made publicly visible. However, they are
limited to using properties (e.g., spouse or sibling or date of birth) that
already exist.

2. Any user who wants to add a novel property must submit the request for
approval before the property can be used in a new fact. The request is
reviewed by a small panel of senior Wikidata editors.

3. The software interface for adding a novel fact includes aggressive auto-
suggest, which encourages users to select properties from the preexisting
set.

4. The Wikidata software retains full version history of all facts, so it is easy
to undo any unwanted changes.

5. Editors have tools that allow them to quickly review large numbers of fac-
tual additions, letting them examine and potentially undo fact insertions
with just 1-2 keystrokes.

6. The system, somewhat surprisingly, does not use much in the way of
machine learning-style probabilistic machinery.

Unfortunately, there is no commercial product that allows a user to easily
replicate the Wikidata process when building a novel knowledge graph. How-
ever, it is clearly an exciting and relevant example that can potentially be em-
ulated.
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6.5 Future Research

By massively expanding the availability of well-administered structured data,
and by allowing anyone (not just database administrators) to improve that
structured data, knowledge graphs promise a revolution in the kinds of data-
powered applications that can be constructed. Everyday users could stop is-
suing simple document ranking queries; instead, with the same trivial amount
of work, they could easily ask detailed questions about the world and receive
a customized data-driven answer. Professional data analysts could easily focus
on novel topics, not just the databases that have been cleaned and prepped for
them. Visualizations in a report or a news article could be tied to their backing
data stores, allowing any reader to explore a data point that seems suspicious.

More concretely, consider:

• An knowledge graph that contains virus-related scientific research, when
combined with an KG-powered application, could allow a user to quickly
identify the researchers who have authored the most papers that mention
both remdesivir and a filovirus.

• An knowledge graph that describes naval vessels, their crew (terminol-
ogy?), and their equipment could power an application that finds repair
opportunities.

This exciting future has arrived in small glimpses: voice assistants, and
search engines that give direct answers instead of forcing users to trawl through
documents. Unfortunately, knowledge graphs do not exist for many topics, and
KG-powered applications exist for fewer. The exciting knowledge graph future
has been frustratingly slow to arrive. We need domain-independent infrastruc-
ture to hurry it along.

Knowledge Graph Construction — One core reason is that constructing
a high-quality KG itself is difficult and time-consuming. Google has been de-
veloping its private knowledge graph for over a decade; and even though the
Wikidata project is one of the best KGs available, it is almost eight years old
but still has quality and coverage challenges. These are large projects, and so
perhaps have necessarily taken a long time. But in past interviews with KG
researchers, we found that even a small new knowledge graph project typically
takes 12 months, even with highly-trained Ph.D.-level engineers.

Knowledge Applications — The pain associated with building applications
for knowledge graphs is even more acute. Only a tiny number of the most
resource-rich organizations have been able to pursue them. Consider that build-
ing an KG-powered application entails:

• Writing complicated data acquisition code that clumsily exports data from
a KG, then reimports it. Worse, this code simply breaks when the KG
changes, even when it improves.
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• Fixing bugs that can hide in many more places than in traditional software:
bugs can lie in source code in the application itself, or incorrect inputs, or
incorrect shipped data from collaborators.

• Shipping massive datasets to collaborators, and finding data quality error
induced by downstream software.

Moreover, because KGs and their applications have a symbiotic relationship
— better applications raise the demand for good KGs, and better KGs enable
better applications — the huge cost of developing applications means that KGs
develop more slowly than they otherwise might. Unsurprisingly, the recent
explosion of tech company investment in improving general-purpose KGs has
gone hand-in-hand with increased popularity of applications like the Google
Assistant.

Research Goals — We propose to research and build infrastructure that will
make KGs and applications dramatically cheaper and easier to build. We plan
to do so in two ways:

• Building a Knowledge Graph Programming System, or KGPS. This is a
programming language and toolset specifically designed for building KG-
driven software and for debugging data quality problems more quickly and
at lower cost than is common today.

• Building and rapidly shipping KGs for several applications, in order to gain
experience and test integration with the KGPS. We will initially target
COVID-19 science, plus related applications. Better scientific understand-
ing of the virus is an urgent social need that this KG and its applications
can help address, while also serving as a testbed for our infrastructure.

We can now describe our plans for the KGPS in more detail.

6.6 The Knowledge Graph Programming System

The Knowledge Graph Programming System is a programming system that
takes the KG as its core data representation. It makes KG applications easier
to build and easier to improve. Its features fall into three main areas:

1. Easier Knowledge Acquisition — KGPS application code can use val-
ues and types that cover the ”real world” just like a KG does. There is
a value for Barack Obama, one for Boston Red Sox, and so on. There
is a type for Politician, for Cartoons, etc. Unlike most programming
platforms, the KGPS library is intended to have the same comprehen-
sive coverage that a good KG does. As a result, programmers can very
succinctly obtain data from a backing KG.

2. Easier Knowledge Debugging — Every output value that KGPS has
a globally-accessible URL that carries the full history of how the value was
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Figure 6: An example of how the Knowledge Graph Programming System
enables efficient and high-quality knowledge applications in the case of COVID-
19 analysis.

computed. Many applications today are a mixture of data and code col-
lected from a hodgepodge of colleagues, models, and opaque institutions;
as a result, debugging an incorrect output can turn into a tedious goose
chase rather than an engineering exercise. In contrast, KGPS application
values will automatically have full lineage information that makes them
debuggable by every programmer.

3. Easier Knowledge Sharing — Data pipelines are everywhere in modern
data science, including model training procedures, crowdsourcing updates,
web crawlers, sensor readings, market updates, data cleaning methods, or
just bureaucratic processes. Each of these pipeline steps can entail heavy
data transfer costs. Worse, errors can be induced by pipelines entirely
outside the application’s control. KGPS programs will have data sharing
operations as a builtin primitive, making it easier to collectively diagnose
and repair knowledge applications, even if those errors are tied to errors
from upstream or downstream pipelines.

Finally, the KGPS system also has one very boring quality: it is mainly
Python, so data scientists and programmers can use it with little change to
their daily routines.

6.7 Example Walkthrough

It is perhaps easiest to describe KGPS’s behavior by showing a simple walk-
through example. The following narrative discusses steps illustrated in Figure 6:
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1. In Step 1, various hospitals over time add statistics about themselves
(date of founding, number of beds, etc) to the public Wikidata Knowledge
Network. The State of Michigan regularly publishes the latest per-zipcode
COVID case numbers data to a public health KG. All updates to these
KGs are monitored by a KGPS sharing server and turned into variables
and values that are available to all KGPS programmers.

2. In Step 2, a programmer writes a short KGPS function that computes
the number of COVID cases per hospital bed in each zipcode in a state,
applying it to the value Michigan. Because all of the data is available via
the KGPS server, the programmer can load it with a single unambiguous
function call, rather than slinging CSV files or SQL for private databases.

3. In Step 3, the program runs and computes the dataset of cases-per-bed.
The result is both returned to the programmer and is synchronized with
the KGPS server. The KGPS server returns a URL that can be used to
permanently refer to the generated dataset.

4. In Step 4, the programmer sends this URL to a medical data analyst at
a different institution, so she can experiment with this new dataset.

5. In Step 5, the medical data analyst writes a short KGPS function that
uses this Michigan cases-per-bed dataset to build a national heatmap of
hospital usage intensity. This program refers to the dataset using the URL
sent by the programmer.

6. In Step 6, the heatmap program runs. It needs the programmer’s data
in order to run, so it contacts the KGPS server and downloads the data.

7. In Step 7, the heatmap program completes and generates its output im-
age. The medical data analyst examines the image and finds a surprising
result in the heatmap near Ann Arbor.

8. In Step 8, the medical data analyst examines the entire lineage of how
the heatmap was computed, including the original programmer’s code,
and any crowd modifications to the source KGs. She realizes that the
number of hospital beds in Ann Arbor is incorrect, so she edits Wikidata
to fix the problem. Because she has access to the full history of how the
hospital data was computed, it is trivial to reexecute the entire chain of
programs and to obtain a satisfactory heatmap.

This short example illustrates many ways KGPS can make KGs more useful
and knowledge workers more productive. The programmer in Step 1 can obtain
an accurate list of US hospitals in just one line of code. The medical data
analyst can easily examine how her programmer friend computed the dataset
she received in Step 4. She can quickly find the source of the bug she identified
in Step 7’s output. The medical data analyst in Step 8 can directly fix the
upstream data bug in Wikidata, so that everyone can benefit from the fix.
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1 def computeStandardBedsPerResident(h: Hospital):

2 nearbyZipcodes = Zipcode.getAll().filter(zc: zc.distance(h.zipcode) < 40)

3 nearbyPopulation = 0

4 for z in nearbyZipcodes:

5 nearbyPopulation += z.population

6 return nearbyPopulation / (h.beds - h.icuBeds)

7

8 computeStandardBedsPerResident(KNPS.get("Univ of Michigan Hospital"))

Figure 7: KGPS code to compute the number of residents per bed in a hospital’s
service area.

6.8 Language Features

We now go through each of the key KGPS features.

6.8.1 Types and Values

A core design goal of the KGPS is to make it easy for programmers to acquire,
use, and update KG data. As a result, KG entities are a primitive data value,
and KG-derived types are built in to the KGPS. In other words, programs
are not limited to describing the world in terms of integers, strings, and sorted
arrays. Rather, programmers can write code that models the real world much
more directly.

As a result, programmers can easily identify sets of data to load without
handling files, formats, or SQL. They can also exploit a high-quality preexisting
set of schema decisions for real-world objects; these are derived from a source
KG. With the KGPS value and type system, much of the data loading and
management code that is done by data software can effectively be offloaded
onto preexisting KG processes.

Figure 7 illustrates KGPS code that computes the number of standard hos-
pital beds per resident offered by a particular hospital for a standard service
area. On line 1, the Hospital type is part of the KGPS builtin class library,
derived from a backing KG. This Hospital type has various useful fields that
have been developed and populated by the KG’s data curation process, so the
programmer does not have to. On line 2, the programmer uses the builtin
Zipcode type to get a list of all zipcodes, then filters them to retain only the
zipcodes within 40 miles of the hospital’s zipcode. The Zipcode.distance()

function and the Hospital.zipcode field are all part of the standard KGPS
library. Many other useful fields are also part of the KG-derived types: the
population field on line 5, and beds and hospitalBeds on line 6. Finally,
on line 8, the programmer grabs a data value that represents the University of
Michigan Hospital, which is an instance of the Hospital type.

Broader Impact — Without the KGPS builtin values and types, the code in
Figure 7 would be substantially harder to write. Programmers would have to
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build a custom Hospital class and define its fields, build or download a Zipcode

class and define its distance() function, then find data for the University of
Michigan and hospital and load the data into the appropriate fields. KGPS
relies on KG-derived data to do all of that tedious, but crucial, data modeling
work.

Intellectual Novelty — The KGPS builtin library is unlike most program-
ming language libraries: it is intended to cover every topic, so the program-
mer rarely has to worry whether a particular concept is part of the system;
she can simply assume it exists. We pursue this by asking the developer for
a tiny number of sample instances for each desired class, then exploit recent
advances in knowledge graph embeddings (such as [72], [73]) to automatically
build a type-specific prediction model. However, the type library cannot shed
previously-defined fields or functions without potentially breaking KGPS user
code; this challenge is quite similar to problems in data integration problems
([74], [75], [76]).

6.8.2 Automatic Provenance

Another core design goal of the KGPS is to make all data values easy to debug.
Even today’s limited knowledge applications entail a vast number of moving
parts and the efforts of many different people. For example, answering a single
voice assistant query might depend on a fact added to the knowledge network
by a Wikidata user, a piece of voice recognition code added by an engineer on an
open source recognition project, a large set of training examples contributed by
users, and interface code written by the company that made the voice device.
If you get a wrong answer to your voice assistant query, which of the above
elements was to blame?

This crucial data debugging is in some ways similar to traditional software
debugging, except that the full program execution is spread out in time, across
many machines, and performed by many different participants. Without knowl-
edge of the full history of any particular piece of data, fixing errors is not pos-
sible. Developers must perform tedious detective work and track down every
possible input, or in many cases simply add more training data to the model
process and hope for the best. Although there has been some recent research
into systems for data debugging, it has focused on debugging a database in
isolation, not data in the context of a multicomponent application ([77]).

KGPS addresses this challenge by giving every single value the full prove-
nance of how it was computed. There has been a substantial amount of re-
search in data provenance — sometimes called data lineage — in a database or
reproducibility setting ([78, 79, 80, 81, 82, 83, 84]). But there is no standard
programming system in which provenance plays a major role. KGPS aims to
perform this service.

There is a huge number of existing provenance systems, but they tend to ei-
ther require a substantial amount of developer adaptation, or are incomplete and
leave some portion of the value history uncaptured. We will instead follow a pol-
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icy of automatic provenance capture and degrading provenance accuracy rather
than coverage. We have previously used synthesized code for data-intensive
tasks to obtain higher performance in opaque user code ([85]), or to perform
data manipulation operations ([86, 87]); we will follow the same strategy with
provenance capture. When dealing with software components that cannot be in-
strumented or wrapped, we will use machine learning models to predict the likely
provenance values; it might seem irresponsible to employ potentially-inaccurate
provenance values, but in a debugging context they will often be quite useable.

Broader Impact — KGPS adds two features not typically seen in provenance
systems. Crucially, it will compute provenance without programmer interaction
and across programs and storage systems. We aim to do this via synthesized
wrappers around user-written KGPS code. If successful, this approach would
make provenance a practical reality for KGPS application programmers, bring-
ing the full history of every data value to the programmer’s fingertips; as a
result, data debugging would be vastly easier.

Intellectual Merit — There is a huge amount of work in data provenance,
but also a lack of practical systems in common practice outside a few narrow
use cases. This suggests deployable provenance is a promising and challenging
direction. Synthesizing wrappers is a known approach, although often done in
a crude manner that simply logs the method call. We are unaware of existing
work that pursues this degraded-accuracy approach for maximizing provenance
coverage.

6.8.3 Sharing Values and Variables

Finally, KGPS will allow easy sharing of values and variables. Running a
KGPS program will essentially generate its own synthetic ”execution knowledge
network”, designed to cover the topic of its own execution history. Values in
this network can be shared with others and commented-upon, just like values
from Wikidata that are shared with the KGPS server in Figure 6. This will
allow KGPS programs to easily add new items back to the shared knowledge
network, which can then be easily reused by other developers.

6.9 Alternate Interaction Modes

The above text describes the standard programmatic interface to KGPS. But
once users add code and data to the system, other interaction modes are possible.
In Phase 1 we built a search engine-like interface for analysts to use, which
exposes KGPS functions and data via a website. Users are able to obtain
useful and interesting programmatic results with just a single line of text.
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7 Practical Steps

This section outlines a number of practical steps that can simplify data integra-
tion. We organize these practical steps into:

1. Data Organization

2. Data Quality and Discovery

3. Data Privacy

4. Infrastructure, Technology and Policy

7.1 Data Organization

• Schema Integration: Schema integration is one of the core challenges for
any organization looking to query disparate datasets. A simple example:
one database of employees might contain startdate as a calendar date,
while a second one contains beganservice as a year. Writing a query that
uses both of these databases entails figuring out how to map startdate

to beganservice. In practice, solving this seemingly-simple problem can
become quite daunting and expensive.

Most traditional schema integration tools are intended to integrate preex-
isting schemas with extremely high accuracy. This makes the tools suitable
for important integrated queries, such as computing payroll for people in
a large organization with many employee databases. These tools often
come with bundled professional services. IBM and Palantir are two well-
known vendors. These projects tend to be time-consuming and relatively
expensive. This is usually not a viable approach for projects that aim to
make all data in the organization queryable: the per-schema integration
cost is simply massive when the number of schemas is large.

There are research and startup efforts that use probabilistic methods to
perform schema-specific integration at more reasonable cost. Tamr is one
small but growing vendor. These can be successful, but may have unusual
requirements, such as extensive employee-annotated training data.

More recently, knowledge graphs have employed web front-end tools and
social processes to produce a single large-scale integrated schema. Es-
sentially the knowledge graph’s schema is the ”target”; all raw data in
the world must be formatted to fit this target or it cannot be added to
the knowledge graph. This is a major achievement, especially consider-
ing the relatively low financial cost. However, it has come at the cost of
some flexibility. Users who cannot accept the knowledge graph’s target
schema (perhaps to retain backward compatibility with legacy software)
simply cannot add their data to the knowledge graph. Making matters
worse, there is currently no standard commercial offering to enable private
knowledge graph construction.
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Figure 8: High-level view of various tools for schema integration

It may sound like promulgating standardized schemas would enable the
best of all worlds, but most organizations find these difficult to imple-
ment. One way to view the success of knowledge graph projects is that
they are effectively social software systems that encourage organizational
agreement on a standardized schema. Although there is no commercial
product available today in this area, it is worth watching for in the future.
Figure 8 give a high-level view of these various tools.

• Data Formatting and Naming: One of the easiest ways to simplify
data integration is through standardized files in human-readable formats
with standardized filenames. We have observed that in many instances, a
data management system can be nothing more than a shared filesystem
with standardized filenames and folders. Wherever possible, parse as much
data as is practical into tabular files. Try to avoid proprietary formats.
If possible, use .csv (comma separated values) or even better .tsv (tab
separated values) file formats. Include column labels (each column label
should be unique within the file). Have row labels in the first column,
such as row number or record number (each row label should be unique
within the file).

Avoid lots of tiny files and compress with zip when possible. Use hierar-
chical directories to keep the number of items in a directory reasonable
(less than 1000 files/directory). Use well-defined directory structures to
provide easy to access information about the dataset. For example:
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source/YYYY/MM/DD/hh/mm/source-YYYY-MM-DD-hh-mm-ss.tsv

or
YYYY/MM/DD/hh/mm/source/YYYY-MM-DD-hh-mm-ss-source.tsv

7.2 Data Quality and Discovery

• Data integrity: In most cases, data becomes dirty because organizations
do not invest in setting up policies that control the quality of the data
before it is introduced to the database. It is always a good idea to think
about constraints that should hold on the data at all times (e.g., employee
salary must be greater than 0). This way, if the data is updated, we will
make sure those updates would not violate the constraints.

Fortunately, there is a plethora of work that addresses ways to design con-
straints to keep the data consistent at all times. Functional dependencies
and Denial Constraints are some examples [88, 89]. Implementing those
constraints could be done either at the application level, i.e., write code
to enforce those rules at the application, or at the DBMS level, i.e., write
triggers that call a SQL procedure. The latter has the advantage of en-
forcing the constraints for any number of applications interacting with the
database.

• Testing various hypotheses on the data: It is estimated that design-
ing data processing pipelines takes hundreds of iterations on average [90].
As the data undergoes a myriad of transformations over time, it is cru-
cial to be able to quickly test hypotheses on the data to make sure the
pipeline is up-to-date (e.g., new training data available, new updates to
base tables).

Workflow management systems can help design and test data pipelines
as the data and the organizations specifications (e.g., new department)
evolve. Data Civilizer is one example of such a tool [8].

• Data version control: Typically, data is handled by different actors
in an organization (different departments, etc.). It is important to keep
track of “who did what” to the data over time. This makes it easy to ask
the right people about versions of the data (instead of asking everyone in
the organization). This is especially important when dirty data starts to
appear as a result of a recent event (e.g., someone has inadvertently made
a “bad” data update). An example system design is outlined in [91].

• Data discovery: Most organizations have a data warehouse or a data
lake where they dump historical data for future analysis. As data analytics
becomes a central part in modern organizations, it is important to make
the job of “data scientists” as productive as possible. A well-cited figure
states that data scientists spend over 80% of their time preparing the
data [8]. This leaves them with very little time to perform their analytical
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tasks. One key component of data preparation is Data Discovery. The
premise of data discovery is: Given a set of tables (e.g., data lake), we
would like to extract tables/records of interest to our task.

7.3 Data Privacy

• Database Technologies for Privacy:Protecting diverse datasets, their
aggregates, and subproducts may require encrypted databases such as
those presented in [92, 93, 94, 95]. Essentially, these systems attempt
to enforce organizational policies on data confidentiality, integrity and/or
availability of data throughout the data lifecyle. An overview of the state-
of-the-art in encrypted databases is given in [96].

• Data Ownership: Limit data ownership and access to those with a need
to know. While there are algorithmic solutions for such policy checking,
these are often very difficult to implement and have major issues when
something goes wrong. There are new techniques proposed that may sim-
plify the implementation of complex access control policies such as query
based access control [97]; however, these approaches are still relatively new
and in the research phase.

• Inadvertent Releases Are Very Possible: Unfortunately, ensuring
data privacy is an enduring problem for which there are no easy solutions.
In general, organizations can improve by minimizing data collection when-
ever possible, and by following good storage practices of sensitive data
(such as storing data in encrypted form, and not allowing wide copies of
sensitive files). These measures will help minimize the frequency of the
most egregious ”data spills”, such as releasing an entire database of private
financial information.

However, even cautious organizations can make errors. A famous example
is connected to the Netflix Prize contest of the mid-2000s. The Netflix
Prize was a machine learning contest, in which Netflix challenged research
teams to predict customers’ movie ratings more accurately than any other
team. As part of the contest, Netflix released a database of customer movie
ratings, with all customer information replaced by an opaque identifier.
The data had four fields: user-identifier, movie-title, grade, and
date-of-grade.

After Netflix released this data, researchers were able to identify the real
names of some of the customers in this database. They examined the pub-
lic rating history of users on IMDB.com, which reveals actual usernames.
By looking for pairs of users who had distinctive and overlapping movie
histories on both sites, they were able to tie the Netflix user identifiers
to IMDB user accounts. Some of one user’s Netflix rating history con-
tained sensitive movie titles that were not part of the user’s IMDB rating
history, and which arguably revealed information about the user’s sexual
orientation.
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In short: Netflix was careful to act responsibly in its data release, but
still ended up enabling the revelation of private information. Technical
solutions to this problem are currently being explored in the research world
(differential privacy is one direction), but are generally not deployable
today.

The US Census Bureau is a potentially useful model to emulate. They
maintain a large amount of personal information about many Americans,
which most would find extremely intrusive if it were released. This data
is used by researchers and policymakers. However, the census data is be-
lieved to have never been part of an unintentional privacy breach, despite
its long history3

In order for researchers to use much of the Census Bureau data, they must:

– Undergo a background check.

– Physically visit one of 29 Federal Statistical Research Data Cen-
ter access points around the country, where they use a government-
provided terminal.

– Not carry into the access point any electronic means of copying the
data.

In other words, the Census Bureau has avoided Netflix’s strategy of dei-
dentification plus wide distribution. They have instead simply limited
access to the data. This likely has come at some cost to researchers, but
does seem to have achieved the data privacy goal.

• Sensitivity of aggregated data: Integration of different non-sensitive
datasets may lead to sensitive outputs. For example, consider a medi-
cal scenario in which a user is trying to integrate data from Table 1 and
Table 2. Suppose Table 1 consists of columns (PatientID, Patient Name,
Patient Gender) and Table 2 consists of columns (PatientID, Patient Date
of Birth, Patient Age). If a researcher is interested in looking at the dis-
tribution of gender and age within the datasets, they may attempt to do a
“join” on Table 1 and Table 2 using the PatientID. Very often, combining
Patient Name and Date of Birth can lead to sensitive Personally Identifi-
able Information (PII). However, if the user instead filtered their queries
to only select the pieces of data relevant from each table, the aggregated
query may not lead to PII information. Similar cases exist within Depart-
ment of Defense (DoD) and enterprise datasets. There are a couple of
approaches to mitigate this risk. In one direction, you could run all ser-
vices on a sensitive network. Thus, any data products will already be on
a system or network approved for the aggregate (e.g., the Census Bureau
example above). While this may seem like the easiest path forward for
developers of the service, from a user perspective, this is not convenient

3An arguable exception: census data was used to support the internment of Japanese-
Americans during the Second World War, at the direction of government officials [98].
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(or feasible). Another approach may be to leverage encrypted databases
[99, 100, 93, 96] such that all data products are kept encrypted and can
only be viewed if certain constraints are satisfied (e.g, a filter that ensures
any data being decrypted doesn’t contain sensitive aggregates). These
tools, largely research efforts, are worth watching and may provide an
interim solution. In the long term, we believe that these approaches in
conjunction with automated tools built on knowledge graphs are a promis-
ing direction. Knowledge graphs would allow Information Security Officers
(ISOs) of various organizations to relatively easily enforce various security
policies. For example, a policy may be that Date of Birth and Patient

Name should not be aggregated on a non PII-compliant system. With a
knowledge graph representation, each record in the database is tied to an
entity type and this policy is easy to enforce. In such a case, the data
integration tool may be able to alert users that they are likely to have
a policy violation and may even be able to help them construct a policy
compliant query. A good overview of the challenges is given in [101].

• Experience with medical data access: We collaborate with two
groups at the Massachusetts General Hospital to help them manage and
clean their data. Managing access to this data has to be done carefully
since it is sensitive data. As collaborators, we (1) cannot copy the data
to any machine and have to use the data only within the MGH servers;
and (2) the data we have is de-identified. We also review any code that
reads this data before deploying it. Data breaches often happen because
of vulnerabilities in the code (e.g., web server assumes all requests are
benign).

7.4 Infrastructure, Technology and Policy

• Data Lakes: A common software deployment is a so-called ”data lake”:
a single physical location where all members of an organization place
datasets, often in raw formats. The Hadoop Distributed Filesystem is
a common infrastructure for data lakes, sometimes with some amount of
administrative tooling. Importantly, there is usually little or no semantic
integration; schemas might not even exist or be declared for all the data,
let alone be integrated.

Data lakes can serve some useful roles, but users will likely be disap-
pointed if they hope the data lake alone will enable them to query the
entire organization’s data. Physically colocating the data is a potentially
useful step, but semantic integration among datasets is often a much more
time-consuming and expensive hurdle. Further, in many cases, physical
colocation might not even be necessary for semantic integration.

One scenario in which a data lake can be useful is when the data be-
ing uploaded is quite homogeneous. For example, it might be useful to

35



transmit all of the log data from a set of servers to a single location. An-
other is when an organization has a sophisticated data science team that
is ready to build novel analyses, and simply lacks physical access to all of
the organization’s data.

• Database vs. Files: Databases and files can often be used together.
Use databases if you need to quickly find particular data items (i.e., you
are looking for a small number of records when compared to the en-
tire dataset). SQL systems are good for medium size datasets that re-
quire ACID (atomicity, consistency, isolation, and durability) guarantees.
NoSQL systems are good for large datasets where ACID guarantees aren’t
required [102]. NewSQL systems are good when you have a need for scal-
ability and ACID compliance [103]. Scanning files in the file system can
be best when reading in a majority of a dataset.

• Federated Data Access: Leverage a scalable data management archi-
tecture that allows the addition of new technologies such as object stores,
databases and file systems. It is unlikely that any single technology so-
lution will scale or provide efficient access to all modalities of data and
federation as an architectural principle is important [25]. As an exam-
ple, polystore systems (an example, BigDAWG is described in detail in
[27, 104, 105]).

• Talent: Access to the right people. Need for data scientists, subject
matter experts in addition to data users.

• Technology Selection: Have Top-Down technology selection. Involve
management in technology selection process. Avoid products/technologies
that have unknown/unreliable development team (e.g., teams for adver-
sary nations; teams of individuals unlikely to continue maintaining soft-
ware)

• Software Licensing: Be aware of software licensing: Certain software
libraries and products have restrictive software licenses. This may limit
the ability to share technology with other industry/academic partners.

• Software and Hardware: Avoid software/hardware products with
unknown user base or non-active developer base. Reevaluate soft-
ware/hardware products when the developers are acquired by other enti-
ties.

• Incorporating new tools: Maintain an acquisition and development
environment conducive to incorporating new technology advances. Many
of the challenges discussed in this document are active areas of research in
the commercial and academic sector. Innovations are coming at a rapid
pace and it is important that decision makes maintain an environment to
acquire and deploy these technologies in an agile fashion.
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